A262744 Remainder when sum of first n primes is divided by n-th triangular number.
0, 2, 4, 7, 13, 20, 2, 5, 10, 19, 28, 41, 56, 71, 88, 109, 134, 159, 188, 9, 19, 32, 46, 63, 85, 108, 130, 153, 175, 198, 232, 267, 305, 342, 386, 429, 475, 524, 574, 627, 683, 738, 800, 861, 923, 984, 1054, 1133, 1213, 17, 46, 77, 106, 141, 178
Offset: 1
Examples
a(1) = prime(1) mod 1 = 0. a(2) = (prime(1) + prime(2)) mod (1+2) = 2. a(3) = (prime(1) + prime(2) + prime(3)) mod (1+2+3) = 4. a(4) = (prime(1) + prime(2) + prime(3) + prime(4)) mod (1+2+3+4) = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
s:= proc(n) option remember; ithprime(n)+`if`(n>1, s(n-1), 0) end: a:= n-> irem(s(n), n*(n+1)/2): seq(a(n), n=1..70); # Alois P. Heinz, Oct 01 2015
-
Mathematica
Table[Mod[Sum[Prime@ k, {k, n}], Sum[k, {k, n}]], {n, 60}] (* Michael De Vlieger, Sep 30 2015 *) Module[{nn=60,pr,tr},pr=Accumulate[Prime[Range[nn]]];tr=Accumulate[ Range[ nn]];Mod[#[[1]],#[[2]]]&/@Thread[{pr,tr}]] (* Harvey P. Dale, Aug 02 2020 *)
-
PARI
a(n) = sum(k=1, n, prime(k)) % (n*(n+1)/2); vector(500, n, a(n))
Extensions
New name from Altug Alkan, Feb 06 2017, following a suggestion from N. J. A. Sloane
Comments