cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A128103 Number of permutations of [n] with an even number of rises.

Original entry on oeis.org

1, 1, 1, 2, 12, 68, 360, 2384, 20160, 185408, 1814400, 19781504, 239500800, 3124694528, 43589145600, 652885305344, 10461394944000, 177948646719488, 3201186852864000, 60808005761859584, 1216451004088320000, 25547946834881282048, 562000363888803840000
Offset: 0

Views

Author

Ralf Stephan, May 09 2007

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, t,
          add(b(u-j, o+j-1, t), j=1..u)+
          add(b(u+j-1, o-j, 1-t), j=1..o))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 29 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, t, Sum[b[u - j, o + j - 1, t], {j, 1, u}] + Sum[b[u + j - 1, o - j, 1 - t], {j, 1, o}]];
    a[n_] := b[n, 0, 1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 25 2017, after Alois P. Heinz *)
  • PARI
    x='x+O('x^99); Vec(serlaplace((x/(1-x)+tanh(x))/2+1)) \\ Altug Alkan, Jul 25 2017

Formula

E.g.f.: 1 + 1/2 [z/(1-z) + tanh(z) ].
a(n) = A000142(n) - A262745(n).
If n is even, a(n) = (n)!/2 (A002674), if n is odd, a(n) = (n)! * (1 + (-1)^((n-1)/2) * A002430((n+1)/2) / A036279((n+1)/2)) / 2. - Michel Marcus, Dec 09 2012
Conjecture: a(n) = Sum_{k = 0..n} Sum_{j = 0..k} (-1)^(n+j)*binomial(n,k-j)*j^n. - Peter Bala, Jan 22 2020

Extensions

More terms from Alois P. Heinz, Sep 29 2015
Showing 1-1 of 1 results.