cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262769 Integers k such that the concatenation of 2^k and k is prime.

Original entry on oeis.org

3, 23, 63, 261, 281, 291, 4689, 10641, 11231, 12519
Offset: 1

Views

Author

Emre APARI, Mar 24 2016

Keywords

Comments

First three primes: 83, 838860823, 922337203685477580863.
a(11) > 120000. - Giovanni Resta, Apr 08 2016
a(11) > 160000. - Michael S. Branicky, Jul 06 2024

Examples

			For k = 23 we have 2^23 and 23 equal to 8388608 and 23, respectively, and 838860823 is a prime number.
		

Crossrefs

Cf. A000079.

Programs

  • Mathematica
    Select[Range@ 5000, PrimeQ[2^# * 10^IntegerLength[#] + #] &] (* Giovanni Resta, Apr 08 2016 *)
  • PARI
    isok(k) = isprime(eval(Str(2^k, k))); \\ Michel Marcus, Mar 23 2021
  • Python
    from sympy import isprime
    def afind(limit):
      k, twok = 0, 1
      while k <= limit:
        if isprime(int(str(twok) + str(k))): print(k, end = ", ")
        k, twok = k+1, twok*2
    afind(2000) # Michael S. Branicky, Mar 23 2021
    

Extensions

a(9)-a(10) from Giovanni Resta, Apr 08 2016
a(8) inserted by Michael S. Branicky, Jul 06 2024