cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262869 Number of squarefree numbers appearing among the smaller parts of the partitions of n into two parts.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 22, 22, 23, 23
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 03 2015

Keywords

Comments

Number of distinct rectangles with integer length and squarefree width such that L + W = n, W <= L. For example, a(14) = 6; the rectangles are 13 X 1, 12 X 2, 11 X 3, 9 X 5, 8 X 6, 7 X 7. - Wesley Ivan Hurt, Nov 04 2017

Examples

			a(5)=2; there are two partitions of 5 into two parts: (4,1) and (3,2). Both of the smaller parts are squarefree, thus a(5)=2.
a(6)=3; there are three partitions of 6 into two parts: (5,1), (4,2) and (3,3). Among the three smaller parts, all are squarefree, thus a(6)=3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): A262869:=n->add(mobius(i)^2, i=1..floor(n/2)): seq(A262869(n), n=1..100);
  • Mathematica
    Table[Sum[MoebiusMu[i]^2, {i, Floor[n/2]}], {n, 100}]
    Table[Count[IntegerPartitions[n,{2}][[All,2]],?SquareFreeQ],{n,80}] (* _Harvey P. Dale, Oct 17 2021 *)
  • PARI
    a(n) = sum(i=1, n\2, moebius(i)^2); \\ Michel Marcus, Oct 04 2015
    
  • PARI
    a(n)=my(s); n\=2; forsquarefree(k=1, sqrtint(n), s += n\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Jan 08 2018

Formula

a(n) = Sum_{i=1..floor(n/2)} mu(i)^2, where mu is the Möebius function (A008683).
a(n) = A262991(n) - A262868(n).
a(n) = A013928(floor(n/2)+1). - Georg Fischer, Nov 29 2022