cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262927 a(n+9) = a(n) + 10*(n+4) + 9. a(0)=0, a(1)=1, a(2)=3, a(3)=6, a(4)=10, a(5)=15, a(6)=23, a(7)=30, a(8)=39.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 23, 30, 39, 49, 60, 72, 85, 99, 114, 132, 149, 168, 188, 209, 231, 254, 278, 303, 331, 358, 387, 417, 448, 480, 513, 547, 582, 620, 657, 696, 736, 777, 819, 862, 906, 951, 999, 1046, 1095, 1145, 1196, 1248, 1301, 1355, 1410, 1468, 1525
Offset: 0

Views

Author

Paul Curtz, Oct 04 2015

Keywords

Comments

The main (or principal) sequence for the 11 steps recurrence is 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, ..., the partial sums of A054898.
a(n) mod 9 is a sequence of period 90.

Crossrefs

Programs

  • Magma
    I:=[0,1,3,6,10,15,23,30,39]; [n le 9 select I[n] else (Self(n-9)+10*(n-6)+9): n in [1..60]]; // Vincenzo Librandi, Oct 06 2015
  • Mathematica
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 1, 3, 6, 10, 15, 23, 30, 39, 49, 60}, 60] (* Vincenzo Librandi, Oct 06 2015 *)
    RecurrenceTable[{a[n+9] == a[n] + 10*(n+4) + 9, a[0]=0, a[1]=1, a[2]=3, a[3]=6, a[4]=10, a[5]=15, a[6]=23, a[7]=30, a[8]=39},a,{n,0,1000}] (* G. C. Greubel, Oct 16 2015 *)
  • PARI
    a(n) = numerator(((2*n)^2+4)/4)\9 + numerator(((2*n+1)^2+4)/4)\9;
    vector(100, n, a(n-1)) \\ Altug Alkan, Oct 04 2015
    
  • PARI
    concat(0, Vec(-x*(x^8+2*x^7-x^6+3*x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x^2+x+1)*(x^6+x^3+1)) + O(x^100))) \\ Colin Barker, Oct 04 2015
    
  • PARI
    a(n)=((2*n+1)^2+4)\9+(n^2+1)\9 \\ Charles R Greathouse IV, Oct 16 2015
    

Formula

a(n) = A262397(2n) + A262397(2n+1).
a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11), n>10.
G.f.: -x*(x^8+2*x^7-x^6+3*x^5+x^4+x^3+x^2+x+1) / ((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Oct 04 2015
a(n) = (5n^2 + 4n)/9 + O(1), or more precisely (5n^2 + 4n + 3)/9 <= a(n) <= (5n^2 + 4n - 10)/9. - Charles R Greathouse IV, Oct 16 2015