A263176 Decimal expansion of a constant related to A263136 (negated).
1, 5, 8, 9, 2, 4, 1, 4, 7, 1, 8, 0, 1, 6, 5, 0, 3, 5, 0, 5, 9, 9, 5, 2, 0, 0, 1, 7, 3, 7, 3, 2, 1, 4, 0, 8, 5, 5, 4, 7, 4, 6, 5, 9, 9, 9, 5, 5, 8, 3, 3, 6, 9, 6, 8, 2, 1, 8, 2, 4, 8, 0, 8, 0, 2, 7, 1, 7, 8, 2, 0, 5, 5, 7, 3, 2, 6, 5, 8, 1, 8, 3, 7, 5, 5, 0, 4, 1, 8, 3, 9, 5, 8, 7, 2, 6, 8, 9, 3, 4, 1, 6, 6, 0, 0, 2
Offset: 0
Examples
-0.158924147180165035059952001737321408554746599955833696821824808027...
Programs
-
Mathematica
NIntegrate[E^(-3*x)/(1-E^(-4*x))^2/x - 1/(16*x^3) - 1/(16*x^2) + 5*E^(-x)/(96*x), {x, 0, Infinity}, WorkingPrecision -> 120, MaxRecursion -> 100, PrecisionGoal -> 110]
Formula
Integral_{x=0..infinity} exp(-3*x)/(x*(1 - exp(-4*x))^2) - 1/(16*x^3) - 1/(16*x^2) + 5/(96*x*exp(x)) dx.
A263176 + A263177 = log(Gamma(1/4))/2 - Zeta'(-1)/4 - 2*log(2)/3 - log(Pi)/4 = -0.062914043561495455491893116973161914641792581828767341125... . - Vaclav Kotesovec, Oct 12 2015
Comments