cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263192 Decimal expansion of Sum_{n >= 1} cos(n)/sqrt(n), negated.

Original entry on oeis.org

1, 9, 4, 1, 0, 8, 9, 3, 5, 0, 9, 2, 1, 8, 2, 0, 4, 9, 7, 3, 9, 1, 4, 9, 2, 4, 4, 9, 2, 8, 1, 9, 4, 7, 2, 6, 6, 3, 5, 3, 2, 0, 5, 5, 2, 6, 3, 4, 0, 4, 7, 8, 1, 5, 4, 0, 2, 3, 9, 8, 3, 7, 6, 6, 0, 9, 5, 6, 6, 6, 8, 3, 7, 2, 6, 2, 5, 5, 4, 7, 6, 4, 0, 0, 6, 5, 3, 1, 8, 9, 6, 4, 9, 6, 5, 5, 2, 4, 7, 0, 1, 2, 2, 6, 8, 3, 5, 1, 9
Offset: 0

Views

Author

Keywords

Comments

A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below).

Examples

			-0.1941089350921820497391492449281947266353205526340478...
		

Crossrefs

Programs

  • Maple
    evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) + Zeta(0, 1/2, 1-1/(2*Pi))), 120);
  • Mathematica
    N[(Zeta[1/2, 1/(2*Pi)] + Zeta[1/2, 1 - 1/(2*Pi)])/2, 200]
    RealDigits[Re[(1/2)*(PolyLog[1/2, E^(-I)] + PolyLog[1/2, E^I])], 10, 109][[1]] (* Vaclav Kotesovec, Oct 31 2015 *)
  • PARI
    zetahurwitz(1/2, 1/Pi/2)/2 + zetahurwitz(1/2, 1-1/Pi/2)/2 \\ Charles R Greathouse IV, Jan 30 2018

Formula

(Zeta(1/2, 1/(2*Pi)) + Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference.