cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A113024 Decimal expansion of Sum_{k>=1} -(-1)^k/sqrt(k).

Original entry on oeis.org

6, 0, 4, 8, 9, 8, 6, 4, 3, 4, 2, 1, 6, 3, 0, 3, 7, 0, 2, 4, 7, 2, 6, 5, 9, 1, 4, 2, 3, 5, 9, 5, 5, 4, 9, 9, 7, 5, 9, 7, 6, 2, 5, 4, 5, 1, 3, 0, 2, 4, 7, 3, 8, 0, 3, 7, 8, 5, 4, 6, 6, 4, 8, 0, 8, 2, 1, 8, 7, 2, 5, 3, 4, 9, 5, 0, 6, 0, 3, 5, 7, 3, 2, 7, 4, 0, 3, 9, 5, 6, 9, 1, 8, 3, 4, 9, 5, 5, 4, 3, 8, 3, 0, 3, 3
Offset: 0

Views

Author

Robert G. Wilson v, Oct 11 2005

Keywords

Examples

			1 - 1/sqrt(2) + 1/sqrt(3) - 1/sqrt(4) + 1/sqrt(5) - 1/sqrt(6) + 1/sqrt(7) ... =
0.60489864342163037024726591423595549975976254513024738037854664808...
		

References

  • Stephen Fletcher Hewson, A Mathematical Bridge: An Intuitive Journey In Higher Mathematics, World Scientific, NJ, 2003, p. 83.

Crossrefs

Programs

  • Maple
    Zeta(0,1/2,1/2); evalf(%) ; # R. J. Mathar, Dec 17 2024
  • Mathematica
    RealDigits[(1 - Sqrt[2])Zeta[1/2], 10, 111][[1]]
  • PARI
    (1-sqrt(2))*zeta(1/2) \\ G. C. Greubel, Apr 09 2018

Formula

Equals (1-sqrt(2))*zeta(1/2) = (-1+A002193) * A059750.
A265162/A113024 = gamma/2 + Pi/4 - (1/2 + sqrt(2))*log(2) + log(Pi)/2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 03 2015
Equals -zeta(1/2, 1/2). - Peter Luschny, Nov 03 2020

A263193 Decimal expansion of Sum_{n >= 1} sin(n)/sqrt(n).

Original entry on oeis.org

1, 0, 4, 3, 9, 8, 2, 1, 0, 2, 8, 4, 9, 1, 6, 1, 5, 2, 7, 4, 5, 3, 2, 9, 4, 8, 7, 2, 5, 8, 6, 7, 5, 0, 4, 5, 9, 7, 9, 0, 9, 0, 7, 1, 4, 4, 7, 2, 2, 6, 1, 2, 2, 0, 3, 7, 4, 8, 9, 5, 2, 8, 5, 8, 7, 7, 0, 6, 6, 9, 0, 8, 5, 8, 6, 0, 0, 3, 2, 4, 2, 1, 5, 7, 2, 9, 0, 1, 0, 9, 2, 4, 7, 7, 2, 2, 0, 1, 2, 7, 5, 5, 7, 3, 7, 1, 9, 3, 7
Offset: 1

Views

Author

Keywords

Comments

A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below).

Examples

			1.043982102849161527453294872586750459790907144722612...
		

Crossrefs

Programs

  • Maple
    evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) - Zeta(0, 1/2, 1-1/(2*Pi))), 120);
  • Mathematica
    N[(Zeta[1/2, 1/(2*Pi)] - Zeta[1/2, 1 - 1/(2*Pi)])/2, 200]
    RealDigits[Re[(1/2)*I*(PolyLog[1/2, E^(-I)] - PolyLog[1/2, E^I])], 10, 109][[1]] (* Vaclav Kotesovec, Oct 31 2015 *)

Formula

(Zeta(1/2, 1/(2*Pi)) - Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference.

A122143 Decimal expansion of Sum_{k >= 1} cos(k)/k^2.

Original entry on oeis.org

3, 2, 4, 1, 3, 7, 7, 4, 0, 0, 5, 3, 3, 2, 9, 8, 1, 7, 2, 4, 1, 0, 9, 3, 4, 7, 5, 0, 0, 6, 2, 7, 3, 7, 4, 7, 1, 2, 0, 3, 6, 5, 2, 0, 1, 5, 1, 9, 2, 4, 5, 5, 2, 7, 2, 4, 8, 0, 8, 5, 9, 3, 3, 2, 1, 6, 0, 9, 9, 2, 6, 7, 2, 6, 0, 0, 9, 6, 3, 7, 4, 5, 1, 9, 6, 1, 1, 4, 8, 7, 9, 4, 8, 7, 0, 0, 1, 7, 1, 3, 1, 2, 9, 3
Offset: 0

Views

Author

T. D. Noe, Aug 28 2006

Keywords

Comments

Also, decimal expansion of the real part of Sum_{k>=1} e^(i*k)/k^2. [Bruno Berselli, Mar 24 2013]

Examples

			0.324137740053329817241093475006273747120365201519245527248085933216...
		

Crossrefs

Cf. A096418 (decimal expansion of Sum_{k >= 1} sin(k)/k^2).

Programs

  • Mathematica
    Print[x=FullSimplify[Sum[Cos[n]/n^2, {n,Infinity}]]]; RealDigits[N[x,110]][[1]]
  • PARI
    (2*Pi*(Pi-3)+3)/12 \\ Jianing Song, Nov 09 2019

Formula

Equals (2*Pi*(Pi-3)+3)/12.

A329247 Decimal expansion of Sum_{k>=1} cos(k*Pi/6)/k.

Original entry on oeis.org

6, 5, 8, 4, 7, 8, 9, 4, 8, 4, 6, 2, 4, 0, 8, 3, 5, 4, 3, 1, 2, 5, 2, 3, 1, 7, 3, 6, 5, 3, 9, 8, 4, 2, 2, 2, 0, 1, 3, 4, 9, 0, 9, 8, 5, 7, 3, 3, 7, 5, 8, 2, 3, 9, 8, 8, 4, 2, 3, 6, 1, 2, 8, 4, 6, 0, 2, 3, 0, 0, 9, 2, 7, 0, 8, 2, 2, 1, 9, 8, 8, 0, 3, 7, 1, 0, 9, 5, 0, 6, 7
Offset: 0

Views

Author

Jianing Song, Nov 09 2019

Keywords

Comments

Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit.
In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then:
(a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1;
(b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1;
(c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1.
As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi.

Examples

			0.65847894846240835431252317365398422201349098573375...
		

Crossrefs

Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
A329246 (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).

Programs

  • Maple
    Digits := 100: (log(2 + sqrt(3))/2)*10^91:
    ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Nov 09 2019
  • Mathematica
    RealDigits[Log[2 + Sqrt[3]]/2, 10, 100][[1]] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    default(realprecision, 100); log(2 + sqrt(3))/2

Formula

Equals log(2 + sqrt(3))/2.
Equals -log(2*sin(Pi/12)).
Equals arccoth(sqrt(3)). - Amiram Eldar, Dec 05 2021
From Amiram Eldar, Mar 26 2022: (Start)
Equals arcsinh(1/sqrt(2)).
Equals Sum_{n>=1} arcsinh(1/(sqrt(2^(n+2)+2)+sqrt(2^(n+1)+2))) (Vălean, 2106). (End)
log(2 + sqrt(3))/2 = Sum_{n >= 1} 1/(n*P(n, sqrt(3))*P(n-1, sqrt(3))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log(2 + sqrt(3))/2 = 0.658478948(35...) correct to 9 decimal places. - Peter Bala, Mar 16 2024

A329246 Decimal expansion of Sum_{k>=1} cos(k*Pi/4)/k.

Original entry on oeis.org

2, 6, 7, 3, 9, 9, 9, 9, 8, 3, 6, 9, 7, 8, 5, 1, 8, 5, 2, 6, 1, 9, 9, 6, 6, 3, 2, 1, 2, 5, 3, 5, 2, 0, 1, 2, 4, 9, 5, 2, 0, 5, 1, 3, 0, 5, 4, 0, 7, 5, 3, 8, 9, 1, 8, 4, 6, 4, 7, 7, 8, 0, 1, 9, 5, 3, 3, 4, 0, 1, 8, 6, 6, 1, 8, 5, 8, 9, 3, 6, 5, 0, 1, 5, 3, 8, 7, 6, 1, 4, 2
Offset: 0

Views

Author

Jianing Song, Nov 09 2019

Keywords

Comments

Sum_{k>=1} cos(k*x)/k = Re(Sum_{k>=1} exp(k*x*i)/k) = Re(-log(1-exp(x*i))) = -log(2*|sin(x/2)|), x != 2*m*Pi, where i is the imaginary unit.
In general, for real s and complex z, let f(s,z) = Sum_{k>=1} z^k/k^s, then:
(a) if s <= 0, then f(s,z) converges to Polylog(s,z) if |z| < 1;
(b) if 0 < s <= 1, then f(s,z) converges to Polylog(s,z) if z != 1;
(c) if s > 1, then f(s,z) converges to Polylog(s,z) if |z| <= 1.
As a result, let z = e^(i*x), then the series Sum_{k>=1} (cos(k*x) + i*sin(k*x))/k^s converges to Polylog(s,e^(i*x)) if and only if s > 1, or 0 < s <= 1 and x != 2*m*Pi.

Examples

			Sum_{k>=1} cos(k*Pi/4)/k = -log(2*|sin(Pi/8)|) = 0.2673999983...
		

Crossrefs

Similar sequences:
A263192 (Sum_{k>=1} cos(k)/sqrt(k) = Re(Polylog(1/2,exp(i))));
A263193 (Sum_{k>=1} sin(k)/sqrt(k) = Im(Polylog(1/2,exp(i))));
A329247 (Sum_{k>=1} cos(k*Pi/6)/k = Re(Polylog(1,exp(i*Pi/6))));
A121225 (Sum_{k>=1} cos(k)/k = Re(Polylog(1,exp(i))));
this sequence (Sum_{k>=1} cos(k*Pi/4)/k = Re(Polylog(1,exp(i*Pi/4))));
A096444 (Sum_{k>=1} sin(k)/k = Im(Polylog(1,exp(i))));
A122143 (Sum_{k>=1} cos(k)/k^2 = Re(Polylog(2,exp(i))));
A096418 (Sum_{k>=1} sin(k)/k^2 = Im(Polylog(2,exp(i)))).

Programs

  • Mathematica
    RealDigits[Log[1 + Sqrt[2]/2]/2, 10, 120][[1]] (* Amiram Eldar, May 31 2023 *)
  • PARI
    default(realprecision, 100); log(1 + sqrt(2)/2)/2

Formula

Equals log(1 + sqrt(2)/2)/2.
Showing 1-5 of 5 results.