cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A059750 Decimal expansion of zeta(1/2) (negated).

Original entry on oeis.org

1, 4, 6, 0, 3, 5, 4, 5, 0, 8, 8, 0, 9, 5, 8, 6, 8, 1, 2, 8, 8, 9, 4, 9, 9, 1, 5, 2, 5, 1, 5, 2, 9, 8, 0, 1, 2, 4, 6, 7, 2, 2, 9, 3, 3, 1, 0, 1, 2, 5, 8, 1, 4, 9, 0, 5, 4, 2, 8, 8, 6, 0, 8, 7, 8, 2, 5, 5, 3, 0, 5, 2, 9, 4, 7, 4, 5, 0, 0, 6, 2, 5, 2, 7, 6, 4, 1, 9, 3, 7, 5, 4, 6, 3, 3, 5, 6, 8, 1
Offset: 1

Views

Author

Peter Walker (peterw(AT)aus.ac.ae), Feb 11 2001

Keywords

Comments

zeta(1/2) can be calculated as a limit similar to the limit for the Euler-Mascheroni constant or Euler gamma. - Mats Granvik Nov 14 2012
The WolframAlpha link gives 3 series and 3 integrals for zeta(1/2). - Jonathan Sondow, Jun 20 2013

Examples

			-1.4603545088095868128894991525152980124672293310125814905428860878...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Cf. A161688 (continued fraction), A078434, A014176, A113024.

Programs

  • Maple
    Digits := 120; evalf(Zeta(1/2));
  • Mathematica
    RealDigits[ Zeta[1/2], 10, 111][[1]] (* Robert G. Wilson v, Oct 11 2005 *)
    RealDigits[N[Limit[Sum[1/Sqrt[n], {n, 1, k}] - 2*Sqrt[k], k -> Infinity], 90]][[1]] (* Mats Granvik Nov 14 2012 *)
  • PARI
    default(realprecision, 5080); x=-zeta(1/2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b059750.txt", n, " ", d)); \\ Harry J. Smith, Jun 29 2009

Formula

zeta(1/2) = lim_{k->oo} ( Sum_{n=1..k} 1/n^(1/2) - 2*k^(1/2) ) (according to Mathematica 8). - Mats Granvik Nov 14 2012
From Magri Zino, Jan 05 2014 - personal communication: (Start)
The previous result is the case q=2 of the following generalization:
zeta(1/q) = lim_{k->oo} (Sum_{n=1..k} 1/n^(1/q) - (q/(q-1))*k^((q-1)/q)), with q>1. Example: for q=3/2, zeta(2/3) = lim_{k->oo} (Sum_{n=1..k} 1/n^(2/3) - 3*k^(1/3)) = -2.447580736233658231... (End)
Equals -A014176*A113024. - Peter Luschny, Oct 25 2021

Extensions

Sign of the constant reversed by R. J. Mathar, Feb 05 2009

A263192 Decimal expansion of Sum_{n >= 1} cos(n)/sqrt(n), negated.

Original entry on oeis.org

1, 9, 4, 1, 0, 8, 9, 3, 5, 0, 9, 2, 1, 8, 2, 0, 4, 9, 7, 3, 9, 1, 4, 9, 2, 4, 4, 9, 2, 8, 1, 9, 4, 7, 2, 6, 6, 3, 5, 3, 2, 0, 5, 5, 2, 6, 3, 4, 0, 4, 7, 8, 1, 5, 4, 0, 2, 3, 9, 8, 3, 7, 6, 6, 0, 9, 5, 6, 6, 6, 8, 3, 7, 2, 6, 2, 5, 5, 4, 7, 6, 4, 0, 0, 6, 5, 3, 1, 8, 9, 6, 4, 9, 6, 5, 5, 2, 4, 7, 0, 1, 2, 2, 6, 8, 3, 5, 1, 9
Offset: 0

Views

Author

Keywords

Comments

A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below).

Examples

			-0.1941089350921820497391492449281947266353205526340478...
		

Crossrefs

Programs

  • Maple
    evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) + Zeta(0, 1/2, 1-1/(2*Pi))), 120);
  • Mathematica
    N[(Zeta[1/2, 1/(2*Pi)] + Zeta[1/2, 1 - 1/(2*Pi)])/2, 200]
    RealDigits[Re[(1/2)*(PolyLog[1/2, E^(-I)] + PolyLog[1/2, E^I])], 10, 109][[1]] (* Vaclav Kotesovec, Oct 31 2015 *)
  • PARI
    zetahurwitz(1/2, 1/Pi/2)/2 + zetahurwitz(1/2, 1-1/Pi/2)/2 \\ Charles R Greathouse IV, Jan 30 2018

Formula

(Zeta(1/2, 1/(2*Pi)) + Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference.

A263193 Decimal expansion of Sum_{n >= 1} sin(n)/sqrt(n).

Original entry on oeis.org

1, 0, 4, 3, 9, 8, 2, 1, 0, 2, 8, 4, 9, 1, 6, 1, 5, 2, 7, 4, 5, 3, 2, 9, 4, 8, 7, 2, 5, 8, 6, 7, 5, 0, 4, 5, 9, 7, 9, 0, 9, 0, 7, 1, 4, 4, 7, 2, 2, 6, 1, 2, 2, 0, 3, 7, 4, 8, 9, 5, 2, 8, 5, 8, 7, 7, 0, 6, 6, 9, 0, 8, 5, 8, 6, 0, 0, 3, 2, 4, 2, 1, 5, 7, 2, 9, 0, 1, 0, 9, 2, 4, 7, 7, 2, 2, 0, 1, 2, 7, 5, 5, 7, 3, 7, 1, 9, 3, 7
Offset: 1

Views

Author

Keywords

Comments

A slowly convergent series. It may be efficiently computed via the Hurwitz zeta-function (see formula below).

Examples

			1.043982102849161527453294872586750459790907144722612...
		

Crossrefs

Programs

  • Maple
    evalf(1/2*(Zeta(0, 1/2, 1/(2*Pi)) - Zeta(0, 1/2, 1-1/(2*Pi))), 120);
  • Mathematica
    N[(Zeta[1/2, 1/(2*Pi)] - Zeta[1/2, 1 - 1/(2*Pi)])/2, 200]
    RealDigits[Re[(1/2)*I*(PolyLog[1/2, E^(-I)] - PolyLog[1/2, E^I])], 10, 109][[1]] (* Vaclav Kotesovec, Oct 31 2015 *)

Formula

(Zeta(1/2, 1/(2*Pi)) - Zeta(1/2, 1-1/(2*Pi)))/2, see formula (26) in the reference.

A317529 Expansion of Sum_{k>=1} x^(k^2)/(1 + x^(k^2)).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 1, -2, 2, -1, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 2, -1, 2, 0, 1, -1, 1, -3, 1, -1, 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 2, -1, 1, -1, 2, -2, 1, 0, 1, -2, 1, -2, 1, -1, 1, 0, 1, -1, 2, -2, 1, -1, 1, 0, 1, -1, 1, -4, 1, -1, 2, 0, 1, -1, 1, -1, 3, -1, 1, 0, 1, -1, 1, -2, 1, -2, 1, 0, 1, -1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^(k^2)/(1+x^(k^2)),k=1..n), x,n+1),x,n),n=1..100); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[x^k^2/(1 + x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2)^(1/k^2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, IntegerQ[#^(1/2)] &], {n, 95}]
    f[p_, e_] := If[p == 2, If[OddQ[e], -Floor[e/2 + 1], -Floor[(e - 1)/2]], Floor[e/2 + 1]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    A317529(n) = sumdiv(n,d,((-1)^(1+(n/d)))*issquare(d)); \\ Antti Karttunen, Nov 07 2018

Formula

G.f.: Sum_{k>=1} x^A000290(k)/(1 + x^A000290(k)).
L.g.f.: log(Product_{k>=1} (1 + x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A010052(d).
If n is odd, a(n) = A046951(n).
Multiplicative with a(2^e) = -floor(e/2+1) for odd e, -floor((e-1)/2) for even e, and a(p^e) = floor(e/2+1) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s) * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = -(sqrt(2)-1) * zeta(1/2) = 0.604898... (A113024). (End)

A367309 Decimal expansion of area under the curve (1-2^(1-x))*zeta(x) from 0 to 1.

Original entry on oeis.org

6, 0, 2, 1, 1, 2, 3, 4, 9, 3, 1, 0, 3, 7, 1, 5, 5, 4, 9, 7, 1, 1, 2, 6, 3, 2, 0, 0, 5, 1, 5, 4, 1, 3, 5, 9, 9, 4, 8, 4, 7, 1, 2, 0, 0, 0, 0, 0, 6, 3, 9, 4, 6, 5, 9, 6, 7, 3, 6, 5, 2, 6, 3, 5, 8, 3, 0, 8, 2, 6, 8, 1, 4, 1, 8, 7, 7, 3, 7, 5, 7, 1, 8, 5, 6, 4
Offset: 0

Views

Author

Alejandro Malla, Nov 13 2023

Keywords

Comments

The series Sum_{n >= 1} (-1)^(n+1)/n^x converges nonuniformly to g(x) = (1 - 2^(1-x))*zeta(x) on the open interval (0, 1). This series can be described as an alternating version of the 'p-series' when 0 < p < 1. Let f(x) = Sum_{n >= 1} (-1)^(n+1)/n^x. Then f(0+) = g(0) = 1/2 and f(1) = log(2), whereas g(1) is undefined, but has the limit value log(2). Also, f(1/2) = g(1/2) = A113024 = 0.604898643421... .

Examples

			0.60211234931037155497112632...
		

Crossrefs

Programs

  • Mathematica
    y = NIntegrate[(1 - 2^(1-x)) Zeta[x], {x, 0, 1}, WorkingPrecision -> 200]
    RealDigits[y][[1]]
  • PARI
    intnum(x=0, 1, (1-2^(1-x))*zeta(x)) \\ Michel Marcus, Nov 14 2023

A367311 Maximum curvature of the curve (1 - 2^(1-x)) zeta(x) from 0 to 1.

Original entry on oeis.org

0, 6, 4, 1, 3, 9, 2, 8, 2, 0, 6, 4, 2, 5, 7, 1, 6, 8, 4, 2, 2, 0, 8, 8, 7, 1, 6, 5, 1, 2, 7, 1, 8, 1, 6, 8, 7, 3, 9, 3, 6, 5, 6, 8, 2, 8, 4, 4, 6, 4, 6, 4, 0, 1, 3, 9, 5, 5, 9, 5, 7, 7, 0, 0, 2, 2, 5, 2, 5, 7, 6, 2, 7, 9, 8, 3, 6, 9, 3, 2, 1, 7, 2, 4, 9, 4, 7
Offset: 0

Views

Author

Keywords

Comments

The series Sum_{n >= 1} (-1)^(n+1)/n^x converges nonuniformly to (1 - 2^(1-x)) zeta(x) (0,1). This series can be described as an alternating version of the "p-series" when 0 < p < 1. Let f(x) = Sum_{n >= 1} (-1)^(n+1)/n^x and g(x) = (1 - 2^(1-x)) zeta(x). Then f(0+) = g(0) = 1/2 and f(1) = log(2), whereas g(1) is undefined. Also, f(1/2) = g(1/2) = A113024 = 0.604898643421... .

Examples

			Maximum curvature = 0.0641392820642571684220887165127181687393..., which occurs at x = 0.6827548440370203586269... .
		

Crossrefs

Programs

  • Mathematica
    f[x_] := (1 - 2^(1 - x)) Zeta[x];
    c[x_] := Abs[f''[x]]/(1 + f'[x]^2)^(3/2)
    y = FindMaximum[{c[x], 0 < x < 1}, {x, 1/2}, WorkingPrecision -> 1000]
    RealDigits[y][[1]][[1]]

Extensions

One initial 0 inserted by Artur Jasinski, Aug 04 2025

A265162 Decimal expansion of Sum_{k>=1} (-1)^k*log(k)/sqrt(k).

Original entry on oeis.org

1, 9, 3, 2, 8, 8, 8, 3, 1, 6, 3, 9, 2, 8, 2, 7, 3, 8, 9, 6, 4, 6, 1, 5, 4, 5, 9, 3, 5, 5, 2, 3, 8, 1, 1, 4, 2, 9, 5, 2, 7, 0, 2, 2, 2, 5, 2, 9, 2, 2, 1, 9, 9, 2, 2, 9, 3, 6, 0, 4, 8, 1, 0, 3, 3, 4, 4, 0, 1, 6, 6, 6, 4, 4, 4, 4, 6, 8, 9, 8, 7, 3, 4, 9, 8, 6, 8, 0, 9, 2, 0, 8, 7, 7, 7, 8, 1, 6, 3, 6, 8, 4, 5, 7, 2, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 03 2015

Keywords

Comments

Differentiation of Sum_{k>=1} (-1)^k/k^s = -(2^s-2)*zeta(s)/2^s with respect to s gives -Sum_{k>=1} (-1)^k*log(k)/k^s = -2^(1-s)*log(2)*zeta(s) - (1-2^(1-s))*zeta'(s), where zeta(.) and zeta'(.) are the Riemann zeta function and its derivative. - R. J. Mathar, Apr 17 2019, typo in the first formula corrected by Vaclav Kotesovec, Jan 11 2024

Examples

			0.1932888316392827389646154593552381142952702225292219922936048103344...
		

Crossrefs

Programs

  • Maple
    evalf(sum((-1)^k*log(k)/sqrt(k), k=1..infinity), 120);
  • Mathematica
    RealDigits[((3-Sqrt[2])*Log[2]/2 - (Sqrt[2]-1)*(2*EulerGamma + Pi + 2*Log[Pi])/4) * Zeta[1/2], 10, 106][[1]]
    RealDigits[DirichletEta'[1/2], 10, 110][[1]] (* Eric W. Weisstein, Jan 08 2024 *)
  • PARI
    ((3-sqrt(2))*log(2)/2 - (sqrt(2)-1)*(2*Euler + Pi + 2*log(Pi))/4)* zeta(1/2) \\ G. C. Greubel, Apr 15 2018

Formula

Equals ((3-sqrt(2))*log(2)/2 - (sqrt(2)-1)*(2*gamma + Pi + 2*log(Pi))/4) * zeta(1/2), where gamma is the Euler-Mascheroni constant A001620.
A265162/A113024 = gamma/2 + Pi/4 - (1/2 + sqrt(2))*log(2) + log(Pi)/2.

A367312 Minimum value of 2nd derivative of (1 - 2^(1-x)) zeta(x), for 0 < x < 1.

Original entry on oeis.org

0, 6, 7, 4, 1, 9, 2, 5, 9, 6, 9, 6, 7, 5, 6, 0, 7, 2, 5, 4, 7, 5, 3, 0, 6, 6, 6, 9, 2, 6, 7, 3, 0, 4, 6, 7, 1, 0, 1, 3, 0, 8, 6, 8, 9, 9, 9, 8, 9, 0, 1, 2, 8, 0, 8, 7, 2, 2, 2, 1, 2, 2, 4, 9, 1, 5, 0, 2, 5, 3, 5, 5, 4, 3, 6, 4, 6, 7, 3, 4, 1, 7, 4, 5, 9, 6, 2
Offset: 0

Views

Author

Keywords

Comments

The series Sum_{n >= 1} (-1)^(n+1)/n^x converges nonuniformly to (1 - 2^(1-x)) zeta(x) (0,1). This series can be described as an alternating version of the "p-series" when 0 < p < 1. Let f(x) = Sum_{n >= 1} (-1)^(n+1)/n^x and g(x) = (1 - 2^(1-x)) zeta(x). Then f(0+) = g(0) = 1/2 and f(1) = log(2), whereas g(1) is undefined. Also, f(1/2) = g(1/2) = A113024 = 0.604898643421... .

Examples

			Minimum value of f"(x), where f(x) = (1 - 2^(1-x)) zeta(x), for 0 < x < 1:
0.0641392820642571684220887165127181687393656828446464013955957700...,
which occurs for x = 0.59737100658235275929541785444598... .
		

Crossrefs

Programs

  • Mathematica
    f[x_] := (1 - 2^(1 - x)) Zeta[x];
    y = FindMinimum[{f''[x], 0 < x < 1}, {x, 1/2}, WorkingPrecision -> 1000]
    RealDigits[y][[1]][[1]]

A251735 Decimal expansion of Sum_{n>=1} (-1)^(n+1)/n^(1/3).

Original entry on oeis.org

5, 7, 1, 7, 5, 2, 8, 3, 3, 8, 2, 5, 2, 7, 7, 6, 6, 4, 9, 3, 6, 4, 7, 5, 6, 8, 1, 1, 3, 6, 0, 3, 2, 6, 5, 5, 2, 4, 3, 1, 4, 8, 1, 5, 7, 4, 7, 3, 2, 5, 4, 1, 1, 5, 8, 0, 6, 1, 4, 7, 5, 0, 8, 2, 8, 0, 3, 1, 8, 4, 9, 1, 1, 9, 3, 9, 9, 3
Offset: 0

Views

Author

R. J. Mathar, Dec 07 2014

Keywords

Comments

Cubic root analog of A113024.

Examples

			0.57175283382527766493...
		

Crossrefs

Programs

  • Maple
    Zeta(1/3)*(1-root[3](4)) ; evalf(%) ;
  • Mathematica
    RealDigits[-Zeta[1/3]*(4^(1/3) - 1), 10, 100][[1]] (* G. C. Greubel, Apr 15 2018 *)
  • PARI
    -zeta(1/3)*(4^(1/3)-1) \\ Charles R Greathouse IV, Apr 20 2016

Formula

Equals 1 - 1/A002580 + 1/A002581 - 1/A005480 + ... = A251734 *(1 - A005480).

A331239 Decimal expansion of Sum_{k>=0} (-1)^k/AGM(1, 1+k).

Original entry on oeis.org

6, 0, 9, 2, 1, 5, 1, 5, 0, 4, 5, 2, 4, 4, 9, 2, 2, 8, 7, 3, 0, 4, 7, 3, 3, 7, 1, 3, 4, 9, 1, 6, 6, 0, 5, 1, 1, 1, 8, 3, 9, 3, 9, 2, 2, 8, 5, 6, 5, 9, 9, 9, 7, 3, 5, 7, 8, 7, 2, 0, 3, 1, 3, 8, 1, 9, 5, 6, 7, 5, 6, 0, 2, 5, 4, 2, 6, 7, 1, 2, 2, 7, 6, 1, 2, 3, 0
Offset: 0

Views

Author

Daniel Hoyt, Jan 13 2020

Keywords

Comments

AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre.
This series is closely related to A188859 (Sum_{k>=0} (-1)^k/((1+(1+k))/2)) and A113024 (Sum_{k>=0} (-1)^k/sqrt(1+k)). The denominators of these alternating series differ by being arithmetic, geometric, or arithmetic-geometric means of 1 and k.

Examples

			0.6092151504524492287304733713491660511183939228565999735...
		

Crossrefs

Programs

  • PARI
    sumalt(k=0, (-1)^k/agm(1,1+k))
Showing 1-10 of 14 results. Next