cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A281542 Expansion of Sum_{i>=1} x^(i^2)/(1 + x^(i^2)) * Product_{j>=1} (1 + x^(j^2)).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 2, 3, 0, 1, 2, 0, 0, 2, 3, 0, 0, 0, 3, 5, 0, 0, 5, 7, 0, 0, 0, 2, 3, 1, 2, 3, 4, 2, 5, 3, 0, 0, 5, 7, 0, 0, 4, 9, 4, 2, 5, 7, 5, 3, 4, 2, 3, 0, 5, 10, 4, 1, 11, 12, 0, 2, 6, 7, 4, 0, 2, 12, 12, 0, 6, 15, 9, 2, 8, 7, 3, 7, 8, 10, 9, 5, 8, 21, 13, 0, 7, 19, 13, 0, 2, 10, 13, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 23 2017

Keywords

Comments

Total number of parts in all partitions of n into distinct squares.

Examples

			a(26) = 5 because we have [25, 1], [16, 9 ,1] and 2 + 3 = 5.
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^i^2/(1 + x^i^2), {i, 1, nmax}] Product[1 + x^j^2, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^(i^2)/(1 + x^(i^2)) * Product_{j>=1} (1 + x^(j^2)).
From Alois P. Heinz, Feb 03 2021: (Start)
a(n) = Sum_{k>=0} k * A341040(n,k).
a(n) = 0 <=> n in { A001422 }. (End)

A344299 Expansion of Sum_{k>=1} (-1)^(k+1) * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, -1, 1, 2, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, -1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, -2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, -1, 3, 1, 1, 0, 1, 1, 1, 0, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Comments

Number of odd squares dividing n minus number of even squares dividing n.
Inverse Moebius transform of A258998.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
    f[p_, e_] := 1 - (-1)^p*Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 - (-1)^f[i,1] * floor(f[i,2]/2));} \\ Amiram Eldar, Nov 15 2022

Formula

G.f.: Sum_{k>=1} (1 - theta_4(x^k)) / 2.
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(2^e) = 1 - floor(e/2), and a(p^e) = 1 + floor(e/2) for p > 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/12 (A072691). (End)

A329801 Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 + x^(k*(k + 1)/2)).

Original entry on oeis.org

1, -1, 2, -1, 1, -1, 1, -1, 2, 0, 1, -3, 1, -1, 3, -1, 1, -1, 1, -2, 3, -1, 1, -3, 1, -1, 2, 0, 1, -1, 1, -1, 2, -1, 1, -2, 1, -1, 2, -2, 1, -2, 1, -1, 4, -1, 1, -3, 1, 0, 2, -1, 1, -1, 2, -2, 2, -1, 1, -5, 1, -1, 3, -1, 1, 0, 1, -1, 2, 0, 1, -4, 1, -1, 3, -1, 1, 0, 1, -2, 2, -1, 1, -3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 + x^(k (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(-1)^(n/d + 1) Boole[IntegerQ[Sqrt[8 d + 1]]], {d, Divisors[n]}], {n, 1, 85}]
  • PARI
    A329801(n) = sumdiv(n,d,((-1)^(1+(n/d))) * ispolygonal(d,3)); \\ Antti Karttunen, Jan 15 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * theta_2(x^(k/2)) / (2 * x^(k/8)).
a(n) = Sum_{d|n} (-1)^(n/d + 1) * A010054(d).
Showing 1-3 of 3 results.