cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344300 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, -3, 1, 1, 1, -3, 10, 1, 1, -3, 1, 1, 1, -19, 1, 10, 1, -3, 1, 1, 1, -3, 26, 1, 10, -3, 1, 1, 1, -19, 1, 1, 1, -30, 1, 1, 1, -3, 1, 1, 1, -3, 10, 1, 1, -19, 50, 26, 1, -3, 1, 10, 1, -3, 1, 1, 1, -3, 1, 1, 10, -83, 1, 1, 1, -3, 1, 1, 1, -30, 1, 1, 26, -3, 1, 1, 1, -19
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Comments

Excess of sum of odd squares dividing n over sum of even squares dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) # &, IntegerQ[#^(1/2)] &], {n, 1, 80}]
    f[p_, e_] := (p^(2*Floor[e/2] + 2) - 1)/(p^2 - 1); f[2, e_] := 2 - (2^(2*Floor[e/2] + 2) - 1)/3; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*d)); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 2 - (2^(2*floor(f[i,2]/2) + 2) - 1)/3, (f[i,1]^(2*floor(f[i,2]/2) + 2) - 1)/(f[i,1]^2 - 1)));} \\ Amiram Eldar, Nov 15 2022

Formula

Multiplicative with a(2^e) = 2 - (2^(2*floor(e/2) + 2) - 1)/3, and a(p^e) = (p^(2*floor(e/2) + 2) - 1)/(p^2 - 1) for p > 2. - Amiram Eldar, Nov 15 2022

A347176 G.f.: Sum_{k>=1} (-1)^(k+1) * k * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -1, 1, 1, 1, -5, 1, 4, 1, -1, 1, 1, 1, -1, 6, 1, 4, -1, 1, 1, 1, -5, 1, 1, 1, -4, 1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -5, 8, 6, 1, -1, 1, 4, 1, -1, 1, 1, 1, -1, 1, 1, 4, -13, 1, 1, 1, -1, 1, 1, 1, -4, 1, 1, 6, -1, 1, 1, 1, -5, 13, 1, 1, -1, 1, 1, 1, -1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Comments

Excess of sum of square roots of odd square divisors of n over sum of square roots of even square divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) #^(1/2) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 3 - 2^(Floor[e/2] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*sqrtint(d))); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 3 - 2^(floor(f[i,2]/2) + 1), (f[i,1]^(floor(f[i,2]/2) + 1) - 1)/(f[i,1] - 1)));} \\ Amiram Eldar, Nov 15 2022

Formula

Multiplicative with a(2^e) = 3 - 2^(floor(e/2) + 1), and a(p^e) = (p^(floor(e/2) + 1) - 1)/(p - 1) for p > 2. - Amiram Eldar, Nov 15 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023

A360158 a(n) is the number of unitary divisors of n that are odd squares minus the number of unitary divisors of n that are even squares.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The unitary analog of A344299.
The least term that is larger than 2 is a(225) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, 2]; f[2, e_] := If[OddQ[e], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, 1, if(f[i, 1] == 2, 0, 2)));}

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} (-1)^(d+1).
Multiplicative with a(2^e) = 1 if e is odd and 0 if e is even, and for p > 2, a(p^e) = 1 if e is odd and 2 if e is even.
Dirichlet g.f.: (zeta(s)*zeta(2*s)/zeta(3*s)) * (4^s + 2^s - 1)/(4^s + 2^s + 1).
Sum_{k=1..n} a(k) ~ c * n, where c = 5*zeta(2)/(7*zeta(3)) = 0.977451984014... .
Showing 1-3 of 3 results.