cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344299 Expansion of Sum_{k>=1} (-1)^(k+1) * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, -1, 1, 2, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, -1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 2, -2, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, -1, 3, 1, 1, 0, 1, 1, 1, 0, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Comments

Number of odd squares dividing n minus number of even squares dividing n.
Inverse Moebius transform of A258998.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
    f[p_, e_] := 1 - (-1)^p*Floor[e/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 - (-1)^f[i,1] * floor(f[i,2]/2));} \\ Amiram Eldar, Nov 15 2022

Formula

G.f.: Sum_{k>=1} (1 - theta_4(x^k)) / 2.
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(2^e) = 1 - floor(e/2), and a(p^e) = 1 + floor(e/2) for p > 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/12 (A072691). (End)

A347176 G.f.: Sum_{k>=1} (-1)^(k+1) * k * x^(k^2) / (1 - x^(k^2)).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -1, 1, 1, 1, -5, 1, 4, 1, -1, 1, 1, 1, -1, 6, 1, 4, -1, 1, 1, 1, -5, 1, 1, 1, -4, 1, 1, 1, -1, 1, 1, 1, -1, 4, 1, 1, -5, 8, 6, 1, -1, 1, 4, 1, -1, 1, 1, 1, -1, 1, 1, 4, -13, 1, 1, 1, -1, 1, 1, 1, -4, 1, 1, 6, -1, 1, 1, 1, -5, 13, 1, 1, -1, 1, 1, 1, -1, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Comments

Excess of sum of square roots of odd square divisors of n over sum of square roots of even square divisors of n.

Crossrefs

Programs

  • Mathematica
    nmax = 90; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k^2)/(1 - x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) #^(1/2) &, IntegerQ[#^(1/2)] &], {n, 1, 90}]
    f[p_, e_] := (p^(Floor[e/2] + 1) - 1)/(p - 1); f[2, e_] := 3 - 2^(Floor[e/2] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 15 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), (-1)^((d%2)+1)*sqrtint(d))); \\ Michel Marcus, Aug 22 2021
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 3 - 2^(floor(f[i,2]/2) + 1), (f[i,1]^(floor(f[i,2]/2) + 1) - 1)/(f[i,1] - 1)));} \\ Amiram Eldar, Nov 15 2022

Formula

Multiplicative with a(2^e) = 3 - 2^(floor(e/2) + 1), and a(p^e) = (p^(floor(e/2) + 1) - 1)/(p - 1) for p > 2. - Amiram Eldar, Nov 15 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023

A360159 a(n) is the sum of divisors of n that are odd squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 26, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 50, 26, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 26, 1, 1, 1, 1, 1, 91, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*(1 + Floor[e/2])) - 1)/(p^2 - 1); f[2, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 1, (f[i, 1]^(2*(f[i, 2]\2)+2)-1)/(f[i, 1]^2-1))); }

Formula

a(n) = Sum_{d|n, d odd square} d.
a(n) = (A035316(n) + A344300(n))/2.
Multiplicative with a(2^e) = 1, and for p > 2, a(p^e) = (p^(e+2)-1)/(p^2-1) for even e and a(p^e) = (p^(e+1)-1)/(p^2-1) for odd e.
Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-4^(1-s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/6 = 0.4353958914... .

A360161 a(n) is the sum of unitary divisors of n that are odd squares minus the sum of unitary divisors of n that are even squares.

Original entry on oeis.org

1, 1, 1, -3, 1, 1, 1, 1, 10, 1, 1, -3, 1, 1, 1, -15, 1, 10, 1, -3, 1, 1, 1, 1, 26, 1, 1, -3, 1, 1, 1, 1, 1, 1, 1, -30, 1, 1, 1, 1, 1, 1, 1, -3, 10, 1, 1, -15, 50, 26, 1, -3, 1, 1, 1, 1, 1, 1, 1, -3, 1, 1, 10, -63, 1, 1, 1, -3, 1, 1, 1, 10, 1, 1, 26, -3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 29 2023

Keywords

Comments

The unitary analog of A344300.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, p^e + 1]; f[2, e_] := If[OddQ[e], 1, 1 - 2^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, if(f[i, 2]%2, 1, 1 - 2^f[i, 2]), if(f[i, 2]%2, 1, f[i, 1]^f[i, 2] + 1))); }

Formula

a(n) = Sum_{d|n, gcd(d, n/d)=1, d square} (-1)^(d+1) * d.
a(n) = A360160(n) - 2 * A358347(n).
Multiplicative with a(2^e) = 1 - 2^e if e is even and 1 if e is odd, and for p > 2, a(p^e) = p^e + 1 if e is even and 1 if e is odd.
Dirichlet g.f.: (zeta(s)*zeta(2*s-2)/zeta(3*s-2))*(2^(3*s)-2^(s+3)+4)/(2^(3*s)-4).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(5/2)*(4*sqrt(2)-1)) = 0.1393911255... .

A373031 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k^2) / (1 - x^k).

Original entry on oeis.org

1, 1, 1, -3, 1, -3, 1, -3, 10, -3, 1, 6, 1, -3, 10, -19, 1, 6, 1, -19, 10, -3, 1, -10, 26, -3, 10, -19, 1, 31, 1, -19, 10, -3, 26, -46, 1, -3, 10, 6, 1, -30, 1, -19, 35, -3, 1, -46, 50, 22, 10, -19, 1, -30, 26, 30, 10, -3, 1, -21, 1, -3, 59, -83, 26, -30, 1, -19, 10, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k^2)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d+1) * d^2.

A373032 Expansion of Sum_{k>=1} (-1)^(k+1) * k^2 * x^(k*(k+1)) / (1 - x^k).

Original entry on oeis.org

0, 1, 1, 1, 1, -3, 1, -3, 1, -3, 1, 6, 1, -3, 10, -3, 1, 6, 1, -19, 10, -3, 1, -10, 1, -3, 10, -19, 1, 31, 1, -19, 10, -3, 26, -10, 1, -3, 10, 6, 1, -30, 1, -19, 35, -3, 1, -46, 1, 22, 10, -19, 1, -30, 26, 30, 10, -3, 1, -21, 1, -3, 59, -19, 26, -30, 1, -19, 10, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[(-1)^(k + 1) k^2 x^(k (k + 1))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(d+1) * d^2.
Showing 1-6 of 6 results.