cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263200 Number of perfect matchings on a Möbius strip of width 3 and length 2n.

Original entry on oeis.org

28, 104, 388, 1448, 5404, 20168, 75268, 280904, 1048348, 3912488, 14601604, 54493928, 203374108, 759002504, 2832635908, 10571541128, 39453528604, 147242573288, 549516764548, 2050824484904, 7653781175068, 28564300215368, 106603419686404, 397849378530248
Offset: 2

Views

Author

Sergey Perepechko, Oct 12 2015

Keywords

Comments

This sequence obeys the same recurrence relation as A001835.

Crossrefs

Programs

  • Magma
    I:=[28,104]; [n le 2 select I[n] else 4*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2015
  • Mathematica
    CoefficientList[Series[4 (7 - 2 x)/(1 - 4 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    Vec(4*x^2*(7-2*x)/(1-4*x+x^2) + O(x^30)) \\ Altug Alkan, Oct 12 2015
    

Formula

a(n) = Product_{k=1..n} (10 + 2*cos(Pi*(4*k-1)/n) - 12*cos(1/2*Pi*(4*k-1)/n)).
G.f.: 4*x^2*(7-2*x)/(1-4*x+x^2).
From Colin Barker, Oct 12 2015: (Start)
a(n) = 2*((2-sqrt(3))^n + (2+sqrt(3))^n).
a(n) = 4*a(n-1) - a(n-2). (End)
a(n) = 4*A001075(n) for n >= 2. - Philippe Deléham, Mar 03 2023