cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263231 a(n) = n*(25*n - 39)/2.

Original entry on oeis.org

0, -7, 11, 54, 122, 215, 333, 476, 644, 837, 1055, 1298, 1566, 1859, 2177, 2520, 2888, 3281, 3699, 4142, 4610, 5103, 5621, 6164, 6732, 7325, 7943, 8586, 9254, 9947, 10665, 11408, 12176, 12969, 13787, 14630, 15498, 16391, 17309, 18252, 19220
Offset: 0

Views

Author

Emeric Deutsch, Oct 14 2015

Keywords

Comments

For n>=3, a(n) = the hyper-Wiener index of the Jahangir graph J_{2,n}. The Jahangir graph J_{2,n} is a connected graph consisting of a cycle graph C(2*n) and one additional center vertex that is adjacent to n vertices of C(2*n) at distances 2 to each other on C(2*n).
The Hosoya polynomial of J_{2,n} is 3*n*x + n*(n+3)*x^2/2 + n*(n-2)*x^3 + n*(n-3)*x^4/2.

References

  • M. R. Farahani, Hosoya polynomial and Wiener index of Jahangir graphs J_{2,m}, Pacific J. Appl. Math, 7 (3), 2015.

Crossrefs

Programs

  • Haskell
    a263231 n = n * (25 * n - 39) `div` 2
    a263231_list = 0 : -7 : 11 : zipWith (+) a263231_list
       (map (* 3) $ tail $ zipWith (-) (tail a263231_list) a263231_list)
    -- Reinhard Zumkeller, Nov 04 2015
  • Maple
    seq((25*n^2 - 39*n)/2, n=0..40);
  • Mathematica
    Table[n (25 n - 39)/2, {n, 0, 40}]
  • PARI
    vector(50, n, n--; n*(25*n-39)/2)
    
  • PARI
    concat(0, Vec(x*(32*x-7)/(1-x)^3 + O(x^100))) \\ Altug Alkan, Oct 18 2015
    

Formula

G.f.: x*(32*x-7)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

A263227 a(n) = n*(67*n - 89)/2.

Original entry on oeis.org

0, -11, 45, 168, 358, 615, 939, 1330, 1788, 2313, 2905, 3564, 4290, 5083, 5943, 6870, 7864, 8925, 10053, 11248, 12510, 13839, 15235, 16698, 18228, 19825, 21489, 23220, 25018, 26883, 28815, 30814, 32880, 35013, 37213, 39480, 41814, 44215, 46683, 49218, 51820
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2015

Keywords

Comments

For n>=3, a(n) = the hyper-Wiener index of the Jahangir graph J_{3,n}. The Jahangir graph J_{3,n} is a connected graph consisting of a cycle graph C(3n) and one additional center vertex that is adjacent to n vertices of C(3n) at distances 3 to each other on C(3n).
The Hosoya polynomial of J_(3,n) is 4nx + (1/2)n(n+9)x^2 + 2n(n-1)x^3 + n(2n-5)x^4.

Crossrefs

Programs

  • Magma
    [n*(67*n-89)/2: n in [0..40]]; // Bruno Berselli, Oct 15 2015
  • Maple
    seq((1/2)*n*(67*n-89), n = 0 .. 40);
  • Mathematica
    Table[n (67 n - 89)/2, {n, 0, 40}] (* Vincenzo Librandi, Oct 13 2015 *)
  • PARI
    vector(50, n, n--; n*(67*n-89)/2) \\ Altug Alkan, Oct 12 2015
    

Formula

G.f.: x*(-11+78*x)/(1-x)^3. - Vincenzo Librandi, Oct 13 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Oct 13 2015

A263228 a(n) = 2*n*(16*n - 13).

Original entry on oeis.org

0, 6, 76, 210, 408, 670, 996, 1386, 1840, 2358, 2940, 3586, 4296, 5070, 5908, 6810, 7776, 8806, 9900, 11058, 12280, 13566, 14916, 16330, 17808, 19350, 20956, 22626, 24360, 26158, 28020, 29946, 31936, 33990, 36108, 38290, 40536, 42846, 45220, 47658, 50160
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2015

Keywords

Comments

For n>=3, a(n) = the Wiener index of the Jahangir graph J_{4,n}. The Jahangir graph J_{4,n} is a connected graph consisting of a cycle graph C(4*n) and one additional center vertex that is adjacent to n vertices of C(4*n) at distances 4 to each other on C(4*n). In the Farahani reference the expression in Theorem 2 is accidentally incorrect; it should be 2*m*(16*m - 13).
The Hosoya polynomial of J_{4,n} is 5*n*x + n*(n+11)*x^2/2 + n*(2*n+1)*x^3 + n*(3*n-4)*x^4 + 2*n*(n-2)*x^5 + n*(n-3)*x^6/2 (see the Farahani reference, p. 234, last line; however, the expression in Theorem 1, p. 233, is accidentally incorrect).

Crossrefs

Programs

  • Magma
    [2*n*(16*n-13): n in [0..60]]; // Vincenzo Librandi, Oct 15 2015
    
  • Maple
    seq(32*n^2 - 26*n, n=0..40);
  • Mathematica
    Table[2 n (16 n - 13), {n, 0, 40}] (* Bruno Berselli, Oct 15 2015 *)
  • PARI
    vector(50, n, n--; 2*n*(16*n-13)) \\ Altug Alkan, Oct 15 2015

Formula

G.f.: 2*x*(3+29*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

A263229 a(n) = 4*n*(21*n - 26).

Original entry on oeis.org

0, -20, 128, 444, 928, 1580, 2400, 3388, 4544, 5868, 7360, 9020, 10848, 12844, 15008, 17340, 19840, 22508, 25344, 28348, 31520, 34860, 38368, 42044, 45888, 49900, 54080, 58428, 62944, 67628, 72480, 77500, 82688, 88044, 93568, 99260, 105120, 111148, 117344, 123708, 130240
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2015

Keywords

Comments

For n>=3, a(n) = the hyper-Wiener index of the Jahangir graph J_{4,n}.
See A263228 for more comments.

Crossrefs

Programs

  • Magma
    [4*n*(21*n-26): n in [0..20]]; // Vincenzo Librandi, Oct 15 2015
    
  • Maple
    seq(84*n^2 - 104*n, n=0..40);
  • Mathematica
    Table[4 n (21 n - 26), {n, 0, 40}] (* Bruno Berselli, Oct 15 2015 *)
  • PARI
    vector(50, n, n--; 4*n*(21*n-26)) \\ Altug Alkan, Oct 15 2015

Formula

G.f.: 4*x*(47*x-5)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Showing 1-4 of 4 results.