A294217
Triangle read by rows: T(n,k) is the number of graphs with n vertices and minimum vertex degree k, (0 <= k < n).
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 11, 12, 8, 2, 1, 34, 60, 43, 15, 3, 1, 156, 378, 360, 121, 25, 3, 1, 1044, 3843, 4869, 2166, 378, 41, 4, 1, 12346, 64455, 113622, 68774, 14306, 1095, 65, 4, 1, 274668, 1921532, 4605833, 3953162, 1141597, 104829, 3441, 100, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 4, 2, 1;
11, 12, 8, 2, 1;
34, 60, 43, 15, 3, 1;
156, 378, 360, 121, 25, 3, 1;
...
Row sums are
A000088 (simple graphs on n nodes).
Cf.
A263293 (triangle of n-node maximum vertex degree counts).
A333893
Array read by antidiagonals: T(n,k) is the number of unlabeled loopless multigraphs with n nodes of degree k or less.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 5, 3, 1, 1, 1, 5, 8, 10, 3, 1, 1, 1, 6, 14, 26, 16, 4, 1, 1, 1, 7, 20, 61, 60, 29, 4, 1, 1, 1, 8, 30, 128, 243, 184, 45, 5, 1, 1, 1, 9, 40, 254, 800, 1228, 488, 75, 5, 1, 1, 1, 10, 55, 467, 2518, 7252, 6684, 1509, 115, 6, 1
Offset: 0
Array begins:
==============================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 4 5 6 7 8 ...
3 | 1 2 5 8 14 20 30 40 ...
4 | 1 3 10 26 61 128 254 467 ...
5 | 1 3 16 60 243 800 2518 6999 ...
6 | 1 4 29 184 1228 7252 38194 175369 ...
7 | 1 4 45 488 6684 78063 772243 6254652 ...
...
A324693
Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.
Original entry on oeis.org
0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
Offset: 1
The generalization to set-systems is
A327335, with covering case
A327230.
Unlabeled covering graphs are
A002494.
Cf.
A000088,
A004110,
A100743,
A141580,
A245797,
A261919,
A327105,
A327362,
A327364,
A327366,
A327372.
A339788
Triangle read by rows: T(n,k) is the number of forests with n unlabeled vertices and maximum vertex degree k, (0 <= k < n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 7, 6, 2, 1, 1, 3, 11, 13, 6, 2, 1, 1, 4, 17, 30, 15, 6, 2, 1, 1, 4, 25, 60, 39, 15, 6, 2, 1, 1, 5, 36, 128, 94, 41, 15, 6, 2, 1, 1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1, 1, 6, 70, 523, 561, 270, 105, 41, 15, 6, 2, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 4, 2, 1;
1, 3, 7, 6, 2, 1;
1, 3, 11, 13, 6, 2, 1;
1, 4, 17, 30, 15, 6, 2, 1;
1, 4, 25, 60, 39, 15, 6, 2, 1;
1, 5, 36, 128, 94, 41, 15, 6, 2, 1;
1, 5, 50, 254, 232, 103, 41, 15, 6, 2, 1;
...
-
\\ Here V(n, k) gives column k of A144528.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
M(n, m=n)={my(v=vector(m, k, EulerT(V(n,k-1)[2..1+n])~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
A324670
Number of simple graphs on n unlabeled nodes with minimum degree exactly 2.
Original entry on oeis.org
0, 0, 1, 2, 8, 43, 360, 4869, 113622, 4605833, 325817259, 40350371693, 8825083057727, 3447229161054412, 2432897732375453872, 3135299553791882831175, 7445569254636418368355175, 32831169277561326131677454356, 270499962116368309216399255404116
Offset: 1
A324740
Number of simple graphs on n unlabeled nodes with maximum degree exactly 2.
Original entry on oeis.org
0, 0, 2, 4, 8, 15, 25, 41, 65, 100, 150, 225, 327, 474, 678, 962, 1348, 1884, 2602, 3581, 4889, 6644, 8968, 12064, 16124, 21476, 28462, 37585, 49407, 64747, 84495, 109936, 142522, 184226, 237350, 304977, 390669, 499169, 636039, 808468, 1024996, 1296573, 1636151
Offset: 1
-
seq(n) = Vec( (1-x)*(1-x^2)/prod(k=1, n, 1 - x^k + O(x*x^n))^2 - 1/((1-x)*(1-x^2)), -n) \\ Andrew Howroyd, Sep 03 2019
A332760
Triangle of number of connected graphs with n>=2 nodes and maximum degree 1<=k
Original entry on oeis.org
1, 0, 2, 0, 2, 4, 0, 2, 8, 11, 0, 2, 27, 49, 34, 0, 2, 62, 289, 344, 156, 0, 2, 192, 1735, 4457, 3687, 1044, 0, 2, 529, 11676, 63493, 109623, 63411, 12346, 0, 2, 1731, 87669, 1067440, 3835541, 4540334, 1909186, 274668, 0, 2
Offset: 2
Triangle starts
1;
0, 2;
0, 2, 4;
0, 2, 8, 11;
0, 2, 27, 49, 34;
0, 2, 62, 289, 344, 156;
0, 2, 192, 1735, 4457, 3687, 1044;
0, 2,...
Showing 1-7 of 7 results.
Comments