A263297 The greater of bigomega(n) and maximal prime index in the prime factorization of n.
0, 1, 2, 2, 3, 2, 4, 3, 2, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 3, 4, 5, 9, 4, 3, 6, 3, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 4, 13, 4, 14, 5, 3, 9, 15, 5, 4, 3, 7, 6, 16, 4, 5, 4, 8, 10, 17, 4, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 5, 21, 12, 3, 8, 5, 6, 22, 5
Offset: 1
Keywords
Examples
a(6)=2 because 6 is the product of 2 primes (2*3), each not exceeding prime(2)=3. a(8)=3 because 8 is the product of 3 primes (2*2*2), each not exceeding prime(3)=5. a(11)=5 because 11 is prime(5).
Links
Crossrefs
Programs
-
Maple
seq(`if`(n=1,0,max(pi(max(factorset(n))),bigomega(n))),n=1..80); # Peter Luschny, Oct 15 2015
-
Mathematica
f[n_] := Max[ PrimePi[ Max @@ First /@ FactorInteger@n], Plus @@ Last /@ FactorInteger@n]; Array[f, 80]
-
PARI
a(n)=if(n<2, return(0)); my(f=factor(n)); max(vecsum(f[,2]), primepi(f[#f~,1])) \\ Charles R Greathouse IV, Oct 13 2015
Comments