cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A331297 Lexicographically earliest infinite sequence such that a(i) = a(j) => A263297(i) = A263297(j) and A325225(i) = A325225(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 4, 5, 7, 8, 7, 9, 10, 7, 6, 11, 7, 12, 13, 10, 14, 15, 10, 7, 16, 7, 17, 18, 13, 19, 8, 14, 20, 10, 10, 21, 22, 16, 17, 23, 17, 24, 25, 13, 26, 27, 14, 10, 13, 20, 28, 29, 10, 14, 30, 22, 31, 32, 17, 33, 34, 17, 9, 16, 25, 35, 36, 26, 17, 37, 14, 38, 39, 13, 40, 14, 28, 41, 25, 10, 42, 43, 30, 20, 44, 31, 45, 46, 17, 16, 47, 34, 48, 22, 16, 49, 17, 25, 17
Offset: 1

Views

Author

Antti Karttunen, Jan 18 2020

Keywords

Comments

Restricted growth sequence transform of the unordered pair [A001222(n), A061395(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    Aux331297(n) = { my(a=bigomega(n),b=A061395(n)); [min(a,b),max(a,b)]; };
    Aux331297(n) = Set([bigomega(n),A061395(n)]); \\ Alternatively.
    v331297 = rgs_transform(vector(up_to, n, Aux331297(n)));
    A331297(n) = v331297[n];

Formula

For all i, j:
A331170(i) = A331170(j) => a(i) = a(j),
A331298(i) = A331298(j) => a(i) = a(j),
A331299(i) = A331299(j) => a(i) = a(j),
a(i) = a(j) => A326846(i) = A326846(j).

A331296 Number of values of k, 1 <= k <= n, with A263297(k) = A263297(n), where A263297(n) = max(A001222(n), A061395(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 4, 3, 1, 4, 1, 2, 5, 3, 1, 6, 1, 7, 4, 2, 1, 5, 8, 2, 9, 6, 1, 10, 1, 3, 4, 2, 7, 8, 1, 2, 3, 9, 1, 10, 1, 5, 11, 2, 1, 6, 11, 12, 3, 4, 1, 12, 7, 13, 3, 2, 1, 14, 1, 2, 15, 5, 6, 8, 1, 4, 3, 16, 1, 9, 1, 2, 13, 4, 10, 7, 1, 11, 17, 2, 1, 18, 5, 2, 3, 12, 1, 19, 8, 4, 3, 2, 5, 9, 1, 20, 13, 21, 1, 6, 1, 10, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 18 2020

Keywords

Comments

Ordinal transform of A263297.

Crossrefs

Cf. also A078899.

Programs

  • Mathematica
    A263297[n_] := If[n == 1, 0, With[{f = FactorInteger[n]}, Max[PrimePi[Max[f[[All, 1]]]], Total[f[[All, 2]]]]]];
    b[_] = 0;
    a[n_] := With[{t = A263297[n]}, b[t] = b[t] + 1];
    Array[a, 105] (* Jean-François Alcover, Jan 10 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A263297(n) = if(n<2, 0,  my(f=factor(n)); max(vecsum(f[, 2]), primepi(f[#f~, 1]))); \\ From A263297
    v331296 = ordinal_transform(vector(up_to, n, A263297(n)));
    A331296(n) = v331296[n];

A115720 Triangle T(n,k) is the number of partitions of n with Durfee square k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 0, 5, 2, 0, 6, 5, 0, 7, 8, 0, 8, 14, 0, 9, 20, 1, 0, 10, 30, 2, 0, 11, 40, 5, 0, 12, 55, 10, 0, 13, 70, 18, 0, 14, 91, 30, 0, 15, 112, 49, 0, 16, 140, 74, 1, 0, 17, 168, 110, 2, 0, 18, 204, 158, 5, 0, 19, 240, 221, 10, 0, 20, 285, 302, 20, 0, 21, 330, 407
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.

Examples

			Triangle starts:
  1;
  0,  1;
  0,  2;
  0,  3;
  0,  4,  1;
  0,  5,  2;
  0,  6,  5;
  0,  7,  8;
  0,  8, 14;
  0,  9, 20,  1;
  0, 10, 30,  2;
From _Gus Wiseman_, Apr 12 2019: (Start)
Row n = 9 counts the following partitions:
  (9)          (54)       (333)
  (81)         (63)
  (711)        (72)
  (6111)       (432)
  (51111)      (441)
  (411111)     (522)
  (3111111)    (531)
  (21111111)   (621)
  (111111111)  (3222)
               (3321)
               (4221)
               (4311)
               (5211)
               (22221)
               (32211)
               (33111)
               (42111)
               (222111)
               (321111)
               (2211111)
(End)
		

Crossrefs

For a version without zeros see A115994. Row lengths are A003059. Row sums are A000041. Column k = 2 is A006918. Column k = 3 is A117485.
Related triangles are A096771, A325188, A325189, A325192, with Heinz-encoded versions A263297, A325169, A065770, A325178.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
    seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==k&]],{n,0,10},{k,0,Sqrt[n]}] (* Gus Wiseman, Apr 12 2019 *)

Formula

T(n,k) = Sum_{i=0..n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.

A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500, 94163002754652, 369507926510352
Offset: 1

Views

Author

Barry E. Williams, Dec 19 1999

Keywords

Comments

Number of partitions with Ferrers plots that fit inside an n X n box, but not in an n-1 X n-1 box. - Wouter Meeussen, Dec 10 2001
From Benoit Cloitre, Jan 29 2002: (Start)
Let m(1,j)=j, m(i,1)=i and m(i,j) = m(i-1,j) + m(i,j-1); then a(n) = m(n,n):
1 2 3 4 ...
2 4 7 11 ...
3 7 14 25 ...
4 11 25 50 ... (End)
This sequence also gives the number of clusters and non-crossing partitions of type D_n. - F. Chapoton, Jan 31 2005
If Y is a 2-subset of a 2n-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Prefaced with a 1: (1, 1, 4, 14, 50, ...) and convolved with the Catalan sequence = A097613: (1, 2, 7, 25, 91, ...). - Gary W. Adamson, May 15 2009
Total number of up steps before the second return in all Dyck n-paths. - David Scambler, Aug 21 2012
Conjecture: a(n) mod n^2 = n+2 iff n is an odd prime. - Gary Detlefs, Feb 19 2013
First differences of A000984 and A030662. - J. M. Bergot, Jun 22 2013
From R. J. Mathar, Jun 30 2013: (Start)
Equivalent to the Meeussen comment and the Bergot comment: The array view of A007318 is
1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6,
1, 3, 6, 10, 15, 21,
1, 4, 10, 20, 35, 56,
1, 5, 15, 35, 70, 126,
1, 6, 21, 56, 126, 252,
and a(n) are the hook sums Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End)
From Gus Wiseman, Apr 12 2019: (Start)
Equivalent to Wouter Meeussen's comment, a(n) is the number of integer partitions (of any positive integer) such that the maximum of the length and the largest part is n. For example, the a(1) = 1 through a(3) = 14 partitions are:
(1) (2) (3)
(11) (31)
(21) (32)
(22) (33)
(111)
(211)
(221)
(222)
(311)
(321)
(322)
(331)
(332)
(333)
(End)
Coxeter-Catalan numbers for Coxeter groups of type D_n [Armstrong]. - N. J. A. Sloane, Mar 09 2022
a(n+1) is the number of ways that a best of n pairs contest with early termination can go. For example, the first stage of an association football (soccer) penalty-kick shoot out has n=5 pairs of shots and there are a(6)=672 distinct ways it can go. For n=2 pairs, writing G for goal and M for miss, and listing the up-to-four shots in chronological order with teams alternating shots, the n(3)=14 possibilities are MMMM, MMMG, MMGM, MMGG, MGM, MGGM, MGGG, GMMM, GMMG, GMG, GGMM, GGMG, GGGM, and GGGG. Not all four shots are taken in two cases because it becomes impossible for one team to overcome the lead of the other team. - Lee A. Newberg, Jul 20 2024

Examples

			Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ...
		

References

  • Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8.

Crossrefs

Left-central elements of the (1, 2)-Pascal triangle A029635.
Column sums of A096771.
Cf. A000108, A024482 (diagonal from 2), A076540 (diagonal from 3), A000124 (row from 2), A004006 (row from 3), A006522 (row from 4).
Cf. A128064; first differences of A000984.
Cf. A097613.

Programs

  • Haskell
    a051924 n = a051924_list !! (n-1)
    a051924_list = zipWith (-) (tail a000984_list) a000984_list
    -- Reinhard Zumkeller, May 25 2013
    
  • Magma
    [Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    C:= n-> binomial(2*n, n)/(n+1): seq((n+1)*C(n)-n*C(n-1), n=1..25); # Emeric Deutsch, Jan 08 2008
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007
    a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[Binomial[2n,n]-Binomial[2n-2,n-1],{n,30}] (* Harvey P. Dale, Jan 15 2012 *)
  • PARI
    a(n)=binomial(2*n,n)-binomial(2*n-2,n-1) \\ Charles R Greathouse IV, Jun 25 2013
    
  • PARI
    {a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • PARI
    {a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • Sage
    a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n))
    [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015
    

Formula

G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n+1) = binomial(2*n, n) + 2*Sum_{i=0..n-1} binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004
a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009
Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005
a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006
The sequence 1,1,4,... has a(n) = C(2*n,n)-C(2*(n-1),n-1) = 0^n+Sum_{k=0..n} C(n-1,k-1)*A002426(k), and g.f. given by (1-x)/(1-2*x-2*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
a(n) = (3*n-2)*(2*n-2)!/(n*(n-1)!^2) = A001700(n) + A001791(n-1). - David Scambler, Aug 21 2012
D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014
a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016
a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019
Sum_{n>=1} a(n)/8^n = 7/(4*sqrt(2)) - 1. - Amiram Eldar, May 06 2023

Extensions

Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar

A257541 The rank of the partition with Heinz number n.

Original entry on oeis.org

0, 1, -1, 2, 0, 3, -2, 0, 1, 4, -1, 5, 2, 1, -3, 6, -1, 7, 0, 2, 3, 8, -2, 1, 4, -1, 1, 9, 0, 10, -4, 3, 5, 2, -2, 11, 6, 4, -1, 12, 1, 13, 2, 0, 7, 14, -3, 2, 0, 5, 3, 15, -2, 3, 0, 6, 8, 16, -1, 17, 9, 1, -5, 4, 2, 18, 4, 7, 1, 19, -3, 20, 10, 0, 5
Offset: 2

Views

Author

Emeric Deutsch, May 09 2015

Keywords

Comments

The rank of a partition p is the largest part of p minus the number of parts of p.
The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1,1,1] the Heinz number is 2*2*2 = 8. Its rank is 1 - 3 = -2 = a(8). - Emeric Deutsch, Jun 09 2015
This is the Dyson rank (St000145), which is different from the Frobenius rank (St000183); see the FindStat links. - Gus Wiseman, Apr 13 2019

Examples

			a(24) = -2. Indeed, the partition corresponding to the Heinz number 24 = 2*2*2*3 is [1,1,1,2]; consequently, a(24)= 2 - 4 = -2.
		

References

  • G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.

Crossrefs

Positions of 0's are A106529. Positions of 1's are A325233. Positions of -1's are A325234.

Programs

  • Maple
    with(numtheory): a := proc(n) options operator, arrow: pi(max(factorset(n)))-bigomega(n) end proc: seq(a(n), n = 2 .. 120);
  • Mathematica
    Table[PrimePi@ FactorInteger[n][[-1, 1]] - PrimeOmega@ n, {n, 2, 76}] (* Michael De Vlieger, May 09 2015 *)

Formula

a(n) = q(largest prime factor of n) - bigomega(n), where q(p) is defined by q-th prime = p while bigomega(n) is the number of prime factors of n, including multiplicities.

A096771 Triangle read by rows: T(n,m) is the number of partitions of n that (just) fit inside an m X m box, but not in an (m-1) X (m-1) box. Partitions of n with Max(max part, length) = m.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 0, 3, 2, 2, 0, 0, 3, 4, 2, 2, 0, 0, 2, 5, 4, 2, 2, 0, 0, 1, 7, 6, 4, 2, 2, 0, 0, 1, 6, 9, 6, 4, 2, 2, 0, 0, 0, 7, 11, 10, 6, 4, 2, 2, 0, 0, 0, 5, 14, 13, 10, 6, 4, 2, 2, 0, 0, 0, 5, 15, 19, 14, 10, 6, 4, 2, 2, 0, 0, 0, 3, 17, 22, 21, 14, 10, 6, 4, 2, 2, 0, 0, 0, 2, 17, 29
Offset: 1

Views

Author

Wouter Meeussen, Aug 21 2004

Keywords

Comments

Row sums are A000041. Columns are finite and sum to A051924. The final floor(n/2) terms of each row are the reverse of the initial terms of 2*A000041.

Examples

			T(5,3)=3, counting 32, 311 and 221.
From _Gus Wiseman_, Apr 12 2019: (Start)
Triangle begins:
  1
  0  2
  0  1  2
  0  1  2  2
  0  0  3  2  2
  0  0  3  4  2  2
  0  0  2  5  4  2  2
  0  0  1  7  6  4  2  2
  0  0  1  6  9  6  4  2  2
  0  0  0  7 11 10  6  4  2  2
  0  0  0  5 14 13 10  6  4  2  2
  0  0  0  5 15 19 14 10  6  4  2  2
  0  0  0  3 17 22 21 14 10  6  4  2  2
  0  0  0  2 17 29 27 22 14 10  6  4  2  2
  0  0  0  1 17 33 36 29 22 14 10  6  4  2  2
  0  0  0  1 15 39 45 41 30 22 14 10  6  4  2  2
  0  0  0  0 14 41 57 52 43 30 22 14 10  6  4  2  2
  0  0  0  0 11 47 67 69 57 44 30 22 14 10  6  4  2  2
  0  0  0  0  9 46 81 85 76 59 44 30 22 14 10  6  4  2  2
(End)
		

Crossrefs

A version with reflected rows is A338621.
Related triangles are A115720, A325188, A325189, A325192, A325200, with Heinz-encoded versions A257990, A325169, A065770, A325178, A325195.

Programs

  • Mathematica
    Table[Count[Partitions[n], q_List /; Max[Length[q], Max[q]]===k], {n, 16}, {k, n}]
  • PARI
    row(n)={my(r=vector(n)); forpart(p=n, r[max(#p,p[#p])]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k>=1} k*T(n,k) = A368985(n). - Andrew Howroyd, Jan 12 2024

A325225 Lesser of the number of prime factors of n counted with multiplicity and the maximum prime index of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 4, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 1, 3, 2, 3, 2, 2, 2, 2, 1, 3, 3, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			88 has 4 prime indices {1,1,1,5}, the maximum of which is 5, so a(88) = min(4,5) = 4.
		

Crossrefs

Positions of 1's are A174090. Positions of 2's are A325229.

Programs

  • Mathematica
    Table[Min[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]],{n,100}]
  • PARI
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A325225(n) = min(bigomega(n), A061395(n)); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = min(A001222(n), A061395(n)).

Extensions

More terms from Antti Karttunen, Apr 14 2019

A325233 Heinz numbers of integer partitions with Dyson rank 1.

Original entry on oeis.org

3, 10, 15, 25, 28, 42, 63, 70, 88, 98, 105, 132, 147, 175, 198, 208, 220, 245, 297, 308, 312, 330, 343, 462, 468, 484, 495, 520, 544, 550, 693, 702, 726, 728, 770, 780, 816, 825, 1053, 1078, 1089, 1092, 1144, 1155, 1170, 1210, 1216, 1224, 1300, 1352, 1360
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

Numbers whose maximum prime index is one greater than their number of prime indices counted with multiplicity.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    15: {2,3}
    25: {3,3}
    28: {1,1,4}
    42: {1,2,4}
    63: {2,2,4}
    70: {1,3,4}
    88: {1,1,1,5}
    98: {1,4,4}
   105: {2,3,4}
   132: {1,1,2,5}
   147: {2,4,4}
   175: {3,3,4}
   198: {1,2,2,5}
   208: {1,1,1,1,6}
   220: {1,1,3,5}
   245: {3,4,4}
   297: {2,2,2,5}
   308: {1,1,4,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]==1&]

A325178 Difference between the length of the minimal square containing and the maximal square contained in the Young diagram of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 2, 0, 2, 4, 2, 5, 3, 1, 3, 6, 1, 7, 2, 2, 4, 8, 3, 1, 5, 1, 3, 9, 1, 10, 4, 3, 6, 2, 2, 11, 7, 4, 3, 12, 2, 13, 4, 1, 8, 14, 4, 2, 1, 5, 5, 15, 2, 3, 3, 6, 9, 16, 2, 17, 10, 2, 5, 4, 3, 18, 6, 7, 2, 19, 3, 20, 11, 1, 7, 3, 4, 21, 4, 2, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition (3,3,2,1) has Heinz number 150 and diagram
  o o o
  o o o
  o o
  o
containing maximal square
  o o
  o o
and contained in minimal square
  o o o o
  o o o o
  o o o o
  o o o o
so a(150) = 4 - 2 = 2.
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Positions of zeros are A062457. Positions of 1's are A325179. Positions of 2's are A325180.

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]];
    Table[codurf[n]-durf[n],{n,100}]

Formula

a(n) = A263297(n) - A257990(n).

A325192 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is k.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 2, 2, 0, 0, 2, 1, 2, 2, 0, 0, 3, 2, 2, 2, 2, 0, 0, 2, 4, 3, 2, 2, 2, 0, 0, 1, 7, 4, 4, 2, 2, 2, 0, 1, 0, 6, 8, 5, 4, 2, 2, 2, 0, 0, 2, 5, 11, 8, 6, 4, 2, 2, 2, 0, 0, 3, 4, 12, 12, 9, 6, 4, 2, 2, 2, 0, 0, 4, 5, 13, 17, 12, 10, 6, 4, 2, 2, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.

Examples

			Triangle begins:
  1
  1  0
  0  2  0
  0  1  2  0
  1  0  2  2  0
  0  2  1  2  2  0
  0  3  2  2  2  2  0
  0  2  4  3  2  2  2  0
  0  1  7  4  4  2  2  2  0
  1  0  6  8  5  4  2  2  2  0
  0  2  5 11  8  6  4  2  2  2  0
  0  3  4 12 12  9  6  4  2  2  2  0
  0  4  5 13 17 12 10  6  4  2  2  2  0
  0  3  9 12 20 18 13 10  6  4  2  2  2  0
  0  2 12 15 23 25 18 14 10  6  4  2  2  2  0
  0  1 15 19 26 30 26 19 14 10  6  4  2  2  2  0
Row 9 counts the following partitions (empty columns not shown):
   333   432    54      63       72        711       81         9
         441    522     621      6111      3111111   21111111   111111111
         3222   531     51111    411111
         3321   5211    222111   2211111
         4221   22221   321111
         4311   32211
                33111
                42111
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Row sums are A000041. Column k = 1 is A325181. Column k = 2 is A325182.

Programs

  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    codurf[ptn_]:=Max[Length[ptn],Max[ptn]];
    Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); if(n==0, r[1]=1, forpart(p=n, my(c=1); while(c<#p && cAndrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A368985(n) - A115995(n). - Andrew Howroyd, Jan 12 2024
Showing 1-10 of 27 results. Next