A263325 a(n) = sigma(n)*pi(n^2), where sigma(n) is the sum of all (positive) divisors of n, and pi(x) is the number of primes not exceeding x.
0, 6, 16, 42, 54, 132, 120, 270, 286, 450, 360, 952, 546, 1056, 1152, 1674, 1098, 2574, 1440, 3276, 2720, 3312, 2376, 6300, 3534, 5124, 5160, 7672, 4380, 11088, 5184, 10836, 8688, 10314, 9600, 19110, 8322, 13680, 13440, 22590, 11046, 26304, 12452, 24780, 23868, 22968, 15792, 42408, 20349, 34131
Offset: 1
Keywords
Examples
a(1) = 0 since sigma(1)*pi(1^2) = 1*0 = 0. a(2) = 6 since sigma(2)*pi(2^2) = 3*2 = 6.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[#PrimesUpTo(n^2)*SumOfDivisors(n): n in [1..80]]; // Vincenzo Librandi, Oct 15 2015
-
Mathematica
a[n_]:=a[n]=DivisorSigma[1,n]*PrimePi[n^2] Do[Print[n," ",a[n]],{n,1,50}]
-
PARI
a(n) = sigma(n)*primepi(n^2); \\ Michel Marcus, Oct 15 2015
Comments