A263327
A permutation of {0, 1, ..., 1023} corresponding to lexicographical ordering A262557 of numbers with decreasing digits A009995.
Original entry on oeis.org
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48, 65, 66, 68, 72, 80, 96, 129, 130, 132, 136, 144, 160, 192, 257, 258, 260, 264, 272, 288, 320, 384, 513, 514, 516, 520, 528, 544, 576, 640, 768, 7, 11, 13, 14
Offset: 0
-
a263327 0 = 0
a263327 n = head [x | x <- [1..1023], a262557 x == a009995' n]
-
SortBy[Range[0, 1023], DigitCount[#, 2, 1] &] (* Paolo Xausa, Mar 31 2025 *)
-
A263327=vecsort(A262557,,1) \\ Does not include a(0)=0. - M. F. Hasler, Dec 11 2019
A263328
Permutation of {0, ..., 1023} corresponding to lexicographic ordering of numbers with decreasing digits (A009995). Inverse of A263327.
Original entry on oeis.org
0, 1, 2, 11, 3, 12, 13, 56, 4, 14, 15, 57, 16, 58, 59, 176, 5, 17, 18, 60, 19, 61, 62, 177, 20, 63, 64, 178, 65, 179, 180, 386, 6, 21, 22, 66, 23, 67, 68, 181, 24, 69, 70, 182, 71, 183, 184, 387, 25, 72, 73, 185, 74, 186, 187, 388, 75, 188, 189, 389, 190
Offset: 0
-
a263328 0 = 0
a263328 n = head [x | x <- [1..1023], a009995' x == a262557 n]
-
A263328=vecsort(A263327,,1) \\ Does not include a(0)=0. - M. F. Hasler, Dec 11 2019
A263355
Table read by rows: cycles of the permutation A263327, sorted in increasing order of their largest element. The elements in each cycle are listed in decreasing numerical order.
Original entry on oeis.org
0, 1, 2, 16, 12, 5, 17, 18, 84, 192, 75, 68, 65, 64, 56, 38, 28, 26, 7, 939, 978, 908, 881, 853, 852, 840, 809, 798, 782, 777, 776, 772, 760, 758, 756, 746, 736, 717, 711, 708, 703, 698, 690, 669, 666, 662, 647, 622, 610, 595, 585, 564, 555, 553, 547, 531
Offset: 1
n | Cycles: A263355(n, k=1..A263383(n)) | A263383(n)
---+--------------------------------------------------------+-----------
1 | (0) | 1
2 | (1) | 1
3 | (2) | 1
4 | (16, 12, 5) | 3
5 | (17) | 1
6 | (18) | 1
7 | (84) | 1
8 | (192, 75, 68, 65, 64, 56, 38, 28, 26, 7) | 10
9 | (939) | 1
10 | (978, 908, 881, 853, 852, 840, ..., 142, 115, 45) | 74
11 | (1005) | 1
12 | (1006) | 1
13 | (1016, 997, 995, 985, 967, 959, 958, 955, 948, 831) | 10
14 | (1018, 1011, 1007) | 3
15 | (1020, 1019, 1017, 1015, 1014, ..., 10, 9, 8, 6, 4, 3) | 912
16 | (1021) | 1
17 | (1022) | 1
18 | (1023) | 1
A263327(5) = 16, A263327(16) = 12, A263327(12) = 5, so (5 16 12) = (16 12 5) is a 3-cycle. For all other cycles of length > 1, the order in which the terms occur under the map (e.g. 1018 -> 1007 -> 1011 -> 1018 for row 14) is different from the decreasing order given above. - _M. F. Hasler_, Dec 11 2019
-
import Data.List ((\\), sort)
a263355 n k = a263355_tabf !! (n-1) !! (k-1)
a263355_row n = a263355_tabf !! (n-1)
a263355_tabf = sort $ cc a263327_list where
cc [] = []
cc (x:xs) = (reverse $ sort ys) : cc (xs \\ ys)
where ys = x : c x
c z = if y /= x then y : c y else []
where y = a263327 z
-
{M=0; (C(x,L=[x])=until(x==L[1], M+=1<A263327[x]));L); vecsort(vector(18,i,vecsort(C(valuation(M+1,2)),,12)))} \\ append [^15] to remove the long row 15. - M. F. Hasler, Dec 11 2019
A263383
Lengths of cycles of permutation A263327.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 1, 10, 1, 74, 1, 1, 10, 3, 912, 1, 1, 1
Offset: 1
Showing 1-4 of 4 results.
Comments