A263355 Table read by rows: cycles of the permutation A263327, sorted in increasing order of their largest element. The elements in each cycle are listed in decreasing numerical order.
0, 1, 2, 16, 12, 5, 17, 18, 84, 192, 75, 68, 65, 64, 56, 38, 28, 26, 7, 939, 978, 908, 881, 853, 852, 840, 809, 798, 782, 777, 776, 772, 760, 758, 756, 746, 736, 717, 711, 708, 703, 698, 690, 669, 666, 662, 647, 622, 610, 595, 585, 564, 555, 553, 547, 531
Offset: 1
Examples
n | Cycles: A263355(n, k=1..A263383(n)) | A263383(n) ---+--------------------------------------------------------+----------- 1 | (0) | 1 2 | (1) | 1 3 | (2) | 1 4 | (16, 12, 5) | 3 5 | (17) | 1 6 | (18) | 1 7 | (84) | 1 8 | (192, 75, 68, 65, 64, 56, 38, 28, 26, 7) | 10 9 | (939) | 1 10 | (978, 908, 881, 853, 852, 840, ..., 142, 115, 45) | 74 11 | (1005) | 1 12 | (1006) | 1 13 | (1016, 997, 995, 985, 967, 959, 958, 955, 948, 831) | 10 14 | (1018, 1011, 1007) | 3 15 | (1020, 1019, 1017, 1015, 1014, ..., 10, 9, 8, 6, 4, 3) | 912 16 | (1021) | 1 17 | (1022) | 1 18 | (1023) | 1 A263327(5) = 16, A263327(16) = 12, A263327(12) = 5, so (5 16 12) = (16 12 5) is a 3-cycle. For all other cycles of length > 1, the order in which the terms occur under the map (e.g. 1018 -> 1007 -> 1011 -> 1018 for row 14) is different from the decreasing order given above. - _M. F. Hasler_, Dec 11 2019
Links
- Reinhard Zumkeller, Rows n = 1..18 of triangle, flattened, 1024 terms
Programs
-
Haskell
import Data.List ((\\), sort) a263355 n k = a263355_tabf !! (n-1) !! (k-1) a263355_row n = a263355_tabf !! (n-1) a263355_tabf = sort $ cc a263327_list where cc [] = [] cc (x:xs) = (reverse $ sort ys) : cc (xs \\ ys) where ys = x : c x c z = if y /= x then y : c y else [] where y = a263327 z
-
PARI
{M=0; (C(x,L=[x])=until(x==L[1], M+=1<
A263327[x]));L); vecsort(vector(18,i,vecsort(C(valuation(M+1,2)),,12)))} \\ append [^15] to remove the long row 15. - M. F. Hasler, Dec 11 2019
Extensions
Edited by M. F. Hasler, Dec 11 2019
Comments