A263570 Smallest positive integer such that n iterations of A073846 are required to reach an even number.
2, 3, 17, 31, 163, 353, 721, 1185, 1981, 3363, 5777, 10039, 29579, 52737, 94705, 171147, 311101, 568431, 1043463, 1923619, 3559911, 6611675, 12319517, 23023727, 651267929, 1234823707, 2345409699, 4462239583, 8502848523, 16226083005, 31007327791, 59331187155
Offset: 0
Keywords
Examples
a(2)=17 because A073846(17) = 15, A073846(15) = 14; thus it took two steps whereas no smaller positive integer has this property.
Links
- Martin Ehrenstein, Table of n, a(n) for n = 0..43
Programs
-
Mathematica
(* Since A073846(9)=9, search starts with 11 *) c25000000 = Select[Range[25000000], CompositeQ]; a073846[n_] := c25000000[[Floor[n/2]]] a073846Nest[n_] := Length[NestWhileList[a073846, n, OddQ]] a263570[n_] := Module[{list={2, 3}, i, length}, For[i=11, i<=n, i+=2, length=a073846Nest[i]; If[Length[list]
Hartmut F. W. Hoft, Apr 05 2016 *)
Formula
For n>0, a(n+1) >= A073898(b(a(n))), where b(m) is the smallest odd composite not smaller than m, equality always holds if a(n) is composite.
Extensions
a(24)-a(31) from Hartmut F. W. Hoft, Apr 05 2016
Comments