A328549
1, together with the numbers that are simultaneously superior highly composite (A002201), colossally abundant (A004490), deeply composite (A095848), and miserable average divisor numbers (A263572).
Original entry on oeis.org
1, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440
Offset: 1
A002201
Superior highly composite numbers: positive integers n for which there is an e > 0 such that d(n)/n^e >= d(k)/k^e for all k > 1, where the function d(n) counts the divisors of n (A000005).
Original entry on oeis.org
2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 13967553600, 321253732800, 2248776129600, 65214507758400, 195643523275200, 6064949221531200, 12129898443062400, 448806242393308800, 18401055938125660800, 791245405339403414400
Offset: 1
For n=2, 6 and 12 we may take e in the intervals (log(2)/log(3), 1], (log(3/2)/log(2), log(2)/log(3)] and (log(2)/log(5), log(3/2)/log(2)], respectively.
Can the intervals in the previous line can be extended to include the left endpoints? - _Ant King_, May 02 2005
- J. L. Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988.
- S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.
- S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.
- S. Ramanujan, Highly Composite Numbers: Section IV, in 1) Collected Papers of Srinivasa Ramanujan, pp. 111-8, Ed. G. H. Hardy et al., AMS Chelsea 2000. 2) Ramanujan's Papers, pp. 143-150, Ed. B. J. Venkatachala et al., Prism Books Bangalore 2000.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Iain Fox, Table of n, a(n) for n = 1..400 (first 150 terms from T. D. Noe)
- Hirotaka Akatsuka, Maximal order for divisor functions and zeros of the Riemann zeta-function, arXiv:2411.19259 [math.NT], 2024. See p. 4.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 - 409.
- S. Ramanujan, IV: Superior Highly Composite Numbers
- S. Ratering, An interesting subset of the highly composite numbers, Math. Mag., 64 (1991), 343-346.
- Eric Weisstein's World of Mathematics, Superior Highly Composite Number
- Eric Weisstein's World of Mathematics, Colossally Abundant Number
- Wikipedia, Superior highly composite number
-
Rest@ Union@ Array[Product[p^Floor[1/(p^(1/#) - 1)], {p, Prime@ Range@ PrimePi[2^#]}] &[Log@ #] &, 160] (* Michael De Vlieger, Jul 09 2019 *)
-
lista(nn)=my(p=primes(primepi(2^log(nn)))); setminus(Set(vector(nn, i, prod(n=1, primepi(2^log(i)), p[n]^floor(1/(p[n]^(1/log(i))-1))))), [1]) \\ Iain Fox, Aug 23 2020
Better definition from
T. D. Noe, Nov 05 2002
Showing 1-2 of 2 results.
Comments