cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263573 Intersection of A024365 and A129912.

Original entry on oeis.org

6, 30, 60, 180, 210, 2310, 4620, 60060, 510510, 10810800, 116396280, 200560490130, 401120980260
Offset: 1

Views

Author

Bill McEachen, Oct 21 2015

Keywords

Comments

The two sequences involve areas of primitive Pythagorean triples and primorial products. Intersections are only considered once (no repeats). Conjecture: the sequence is infinite.
Conjecture: The next two entries are a(12) = 200560490130, a(13) = 401120980260.
From G. C. Greubel, Dec 29 2015: (Start)
6|a(n) for n>=1,
30|a(n) for n>=2,
a(n)/6 = {1, 5, 10, 30, 35, 385, 770, 10010, ...} is a subset of values found in A008706.
(End)
a(12) and a(13) confirmed. a(14) > 2*10^31, if it exists. - Giovanni Resta, Mar 31 2017

Examples

			A024365 begins {6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, ...}.
A129912 begins {1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, ...}.
So, common entries encountered are {6, 30, 60, 180, 210, 2310, ...}.
Specifically, we see that A024365(1) = A129912(3), A024365(2) = A129912(5), A024365(3) = A129912(6), A024365(5) = A129912(7).
These are then the first four entries of the sequence (6, 30, 60, 180).
		

Crossrefs

Programs

  • Mathematica
    s = 6 Take[Sort[(Times @@ #)/12 & /@ ({Times @@ #, (Last[#]^2 - First[#]^2)/2} & /@ Select[Subsets[Range[1, 3600, 2], {2}], GCD @@ # == 1 &])], 1800]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m - 1], m++]; t = f[m]; Intersection[s, t] (* Michael De Vlieger, Oct 22 2015, after Harvey P. Dale at A020885 and Jean-François Alcover at A129912 *) (* or *)
    ok[n_] := Block[{a, f = Power @@@ FactorInteger[2 n]}, SelectFirst[ Subsets[f, {1, Floor[ Length[f]/2]}], (a = Times @@ #; IntegerQ@ Sqrt[a^2 + (2 n/a)^2]) &, {}] != {}]; pr[n_] := Product[ Prime[n+1-i]^i, {i, n}];  upto[mx_] := Block[{ric, j=1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1 && ok[n], Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip+1, ex-1]]]]; Sort@ Reap[ While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]]; upto[10^12] (* much faster, Giovanni Resta, Mar 31 2017 *)
  • PARI
    \\note: code does not generate the sequence, just checks for a matching PPT entry
    genit(area)={myMax=floor(sqrt(2*area));i5=myMax;endless=0;soln=List();
    while(i5>=2,dun=0;j=2.*myVal/i5; k=floor(j); if(j>k, dun=1 );if(dun<1,
    c=sqrt(i5^2 + k^2);w=floor(c);if(c>w,dun=1); if(dun<1,if(gcd(k,i5)>1,dun=1 ));
    if(dun<1,listput(soln,k); listput(soln,i5);listput(soln,w);listsort(soln);
    print("soln a,b,c = ", soln[1],"  ",soln[2],"  ",soln[3] );dun=2;break ));
    i5--;endless++);if(i5<=2&&dun<1,print("no solution ") );if(i5>2&&dun<2,
    print("max iteration limit was hit ",endless) );print (endless);}
    (C++)
    #include 
    #include 
    using namespace std;
    int main(){ifstream fin1,fin2;
    int myValue,myValue2,ptr,fptr,i5,j5;
    unsigned long list1[9999]={0};
    unsigned long list2[999]={0};
    unsigned long final[31]={0};
    fin1.open("A024365.txt"); fin2.open("A129912.txt");
    ptr=1;
    while(ptr<9999)
    {fin1>> myValue;fin1.get();list1[ptr]=myValue;
        if(ptr<999)
           {fin2>> myValue2;fin2.get();list2[ptr]=myValue2;}
        ptr++;}
    fin1.close();fin2.close();fptr=1;
    for(i5=1;i5<9990;i5++)
    {for(j5=1;j5<999;j5++){
    if(list1[i5]==list2[j5] )
    {
        fptr++;
        if(fptr>30){break;}
        final[fptr]=list1[i5];
        cout << final[fptr] << ",";
        break;
    }}if(fptr>30){break;}}}

Extensions

a(12)-a(13) from Giovanni Resta, Mar 31 2017