A263634 Irregular triangle read by rows: row n gives coefficients of n-th logarithmic polynomial L_n(x_1, x_2, ...) with monomials sorted into standard order.
1, -1, 1, 2, -3, 1, -6, 12, -4, -3, 1, 24, -60, 20, 30, -5, -10, 1, -120, 360, -120, -270, 30, 120, 30, -6, -15, -10, 1, 720, -2520, 840, 2520, -210, -1260, -630, 42, 210, 140, 210, -7, -21, -35, 1
Offset: 1
Examples
The first few polynomials are: (1) x[1]. (2) -x[1]^2 + x[2]. (3) 2*x[1]^3 - 3*x[1]*x[2] + x[3]. (4) -6*x[1]^4 + 12*x[1]^2*x[2] - 4*x[1]*x[3] - 3*x[2]^2 + x[4]. (5) 24*x[1]^5 - 60*x[1]^3*x[2] + 20*x[1]^2*x[3] + 30*x[1]*x[2]^2 - 5*x[1]*x[4] - 10*x[2]*x[3] + x[5]. (6) -120*x[1]^6 + 360*x[1]^4*x[2] - 120*x[1]^3*x[3] - 270*x[1]^2*x[2]^2 + 30*x[1]^2*x[4] + 120*x[1]*x[2]*x[3] + 30*x[2]^3 - 6*x[1]*x[5] - 15*x[2]*x[4] - 10*x[3]^2 + x[6]. ... [1] 1 [2] -1, 1 [3] 2, -3, 1 [4] -6, 12, -4, -3, 1 [5] 24, -60, 20, 30, -5, -10, 1 [6] -120, 360, -120, -270, 30, 120, 30, -6, -15, -10, 1
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 140, 156, 308.
Links
- Peter Luschny, Row n for n = 1..20.
- Tom Copeland, Appell polynomials, cumulants, noncrossing partitions, Dyck paths, and inversion, 2014.
- Tom Copeland, The creation / raising operators for Appell sequences, 2015.
- G. Csordas and J. Williamson, The zeros of the Jensen polynomials are simple, Proceed. of the AMS, 49(1) (1975), 263-264.
- H. Figueroa, J. Gracia-Bondia, and J. Varilly, Faa di Bruno Hopf algebras, arXiv:0508337 [math.CO], 2005; see p. 3.
- E. Getzler, The semi-classical approximation for modular operads, arXiv:alg-geom/9612005, 1996; see p. 2.
- J. Novak and M. LaCroix, Three lectures on free probability, arXiv:1205.2097 [math.CO], 2012.
- E. Schröder, Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Mathematische Annalen vol. 2, 317-365, 1870.
- H. Skovgaard, On inequalities of the Turan type, Math. Scand. 2 (1954), 65-73.
- G. Stewart, On infinitely many algorithms for solving equations, 1993, (translation into English of Schröder's paper above)
Crossrefs
Programs
-
Maple
triangle := proc(numrows) local E, s, Q; E := add(x[i]*t^i/i!, i=1..numrows); s := series(log(1 + E), t, numrows+1); Q := k -> sort(expand(k!*coeff(s, t, k))); seq(print(coeffs(Q(k))), k=1..numrows) end: triangle(6); # updated by Peter Luschny, May 27 2020
Formula
G.f.: Log(1 + Sum_{i >= 1} x_i*t^i/i!) = Sum_{n >= 1} L_n(x_1, x_2, ...)*t^n/n!. [Comtet, p. 140, Eq. [5a]. - corrected by Tom Copeland, Sep 08 2016]
Conjecture: row polynomials are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} binomial(n-2,j-1)*R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = x_k for k > 0. - Mikhail Kurkov, Mar 30 2025
Comments