cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303277 If n = Product (p_j^k_j) then a(n) = (Sum (k_j))^(Sum (p_j)).

Original entry on oeis.org

1, 1, 1, 4, 1, 32, 1, 9, 8, 128, 1, 243, 1, 512, 256, 16, 1, 243, 1, 2187, 1024, 8192, 1, 1024, 32, 32768, 27, 19683, 1, 59049, 1, 25, 16384, 524288, 4096, 1024, 1, 2097152, 65536, 16384, 1, 531441, 1, 1594323, 6561, 33554432, 1, 3125, 128, 2187, 1048576, 14348907, 1, 1024, 65536
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 20 2018

Keywords

Examples

			a(48) = a(2^4 * 3^1) = (4 + 1)^(2 + 3) = 5^5 = 3125.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[PrimeOmega[n]^DivisorSum[n, # &, PrimeQ[#] &], {n, 2, 55}]]
  • PARI
    a(n) = my(f=factor(n)); vecsum(f[,2])^vecsum(f[,1]); \\ Michel Marcus, Apr 21 2018

Formula

a(n) = bigomega(n)^sopf(n) = A001222(n)^A008472(n).
a(p^k) = k^p where p is a prime.
a(A000312(k)) = a(k)*k^A008472(k).
a(A000142(k)) = A022559(k)^A034387(k).
a(A002110(k)) = k^A007504(k).

A364360 a(n) = dpf(n) ^ tpf(n), where dpf(n) is the number of distinct prime factors of n if n >= 2 and otherwise = 0; tpf(n) is the number of all prime factors of n if n >= 2 and otherwise = 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 8, 1, 4, 4, 1, 1, 8, 1, 8, 4, 4, 1, 16, 1, 4, 1, 8, 1, 27, 1, 1, 4, 4, 4, 16, 1, 4, 4, 16, 1, 27, 1, 8, 8, 4, 1, 32, 1, 8, 4, 8, 1, 16, 4, 16, 4, 4, 1, 81, 1, 4, 8, 1, 4, 27, 1, 8, 4, 27, 1, 32, 1, 4, 8, 8, 4, 27, 1, 32, 1
Offset: 0

Views

Author

Peter Luschny, Jul 20 2023

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    dpf := n -> ifelse(n = 0, 0, nops(factorset(n))): # dpf = [0] U [A001221].
    tpf := n -> ifelse(n = 0, 0, bigomega(n)):        # tpf = [0] U [A001222].
    A364360 := n -> dpf(n) ^ tpf(n):
    seq(A364360(n), n = 0..81);

Formula

For n >= 2:
a(n) = 1 => a(n) in A246655, prime powers.
a(n) > 1 => a(n) in A024619, complement of A246655.
Showing 1-2 of 2 results.