A263657 Table T(m, n) of number of (0, 1)-necklaces without zigzags with m 1's and n 0's, read by antidiagonals (see reference for precise definition).
0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 3, 3, 3, 1, 1, 0, 1, 1, 0, 1, 1, 3, 4, 4, 3, 1, 1, 0, 1, 1, 0, 1, 1, 4, 5, 7, 5, 4, 1, 1, 0, 1
Offset: 0
Examples
Table starts: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 ... 1 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 1 0 1 1 3 4 7 8 11 14 17 20 25 28 33 38 ... 1 0 1 1 3 5 8 12 17 23 30 38 47 57 68 80 ... 1 0 1 1 4 6 11 17 27 37 52 68 90 112 141 171 ... 1 0 1 1 4 7 14 23 37 57 82 115 157 207 268 341 ... 1 0 1 1 5 8 17 30 52 82 128 185 265 363 491 644 ... 1 0 1 1 5 9 20 38 68 115 185 285 423 608 850 1160 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..819
- E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
Extensions
a(45)-a(90) from Andrew Howroyd, Feb 26 2017
Comments