cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A263674 Double interprimes: a(n) = (q+r)/2 = (p+s)/2 with p

Original entry on oeis.org

9, 12, 15, 18, 30, 42, 60, 81, 102, 105, 108, 120, 144, 165, 186, 195, 228, 260, 270, 312, 363, 381, 399, 420, 426, 441, 462, 489, 495, 552, 570, 582, 600, 696, 705, 714, 765, 816, 825, 858, 870, 882, 897, 924, 987, 1026, 1050, 1056, 1092, 1113, 1167, 1230
Offset: 1

Views

Author

Antonio Roldán, Oct 23 2015

Keywords

Comments

Values of p (lesser of consecutive primes) are in the sequence A022885.

Examples

			600 is in this sequence because 593, 599, 601 and 607 are consecutive primes, and 600 = (599+601)/2 = (593+607)/2.
		

Crossrefs

Programs

  • Mathematica
    (Prime@ # + Prime[# + 3])/2 & /@ Select[Range@ 240, (First@ # + Last@ #)/2 == (#[[2]] + #[[3]])/2 &@ Prime@ Range[#, # + 3] &] (* Michael De Vlieger, Nov 18 2015 *)
    Mean/@Select[Partition[Prime[Range[300]],4,1],(#[[2]]+#[[3]])/2==(#[[1]]+#[[4]])/2&] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    {forprime(q=3,2000,p=precprime(q-1); r=nextprime(q+1); s=nextprime(r+1);m=(q+r)/2;if(m==(p+s)/2,print1(m,", ")))}

A242383 Lesser of consecutive primes whose average is an oblong number.

Original entry on oeis.org

5, 11, 29, 41, 53, 71, 239, 337, 419, 461, 503, 547, 599, 647, 863, 1051, 1187, 1481, 1721, 1801, 2549, 2647, 2969, 3539, 4421, 6317, 7129, 8009, 10301, 12653, 13567, 14033, 17291, 18353, 19181, 19457, 20021, 22943, 23561, 24179, 27059, 29063, 29753, 31151, 33301, 35153
Offset: 1

Views

Author

Antonio Roldán, May 12 2014

Keywords

Examples

			53 is in the sequence because it is prime, nextprime(53) = 59 and (53+59)/2 = 56 = 8*7, an oblong number.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := NextPrime[n*(n + 1), -1] ; f /@ Select[Range[200], (ob =  #*(# + 1)) == (NextPrime[ob, -1] + NextPrime[ob])/2 &] (* Amiram Eldar, May 06 2020 *)
    Select[Partition[Prime[Range[4000]],2,1],OddQ[Sqrt[1+4*Mean[#]]]&][[All,1]] (* Harvey P. Dale, Oct 25 2020 *)
  • PARI
    {for(i=3,10^5,if(isprime(i),k=(i+nextprime(i+1))/4;if(issquare(8*k+1),print1(i,", "))))}

A263675 Numbers that are both averages of consecutive primes and nontrivial prime powers.

Original entry on oeis.org

4, 9, 64, 81, 625, 1681, 4096, 822649, 1324801, 2411809, 2588881, 2778889, 3243601, 3636649, 3736489, 5527201, 6115729, 6405961, 8720209, 9006001, 12752041, 16056049, 16589329, 18088009, 21743569, 25230529, 29343889, 34586161, 37736449, 39150049
Offset: 1

Views

Author

Antonio Roldán, Oct 23 2015

Keywords

Comments

Intersection of A024675 and A025475.
Lesser of consecutive primes is in the sequence A084289.

Examples

			625 is in this sequence because 625 = 5^4, nontrivial prime power, and 625 = (619+631)/2, with 619 and 631 consecutive primes.
		

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    Primes:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    S:= select(t -> t - prevprime(t) = nextprime(t)-t, {seq(seq(p^j, j=2..floor(log[p](N))),p=Primes)}):
    sort(convert(S,list)); # Robert Israel, Dec 27 2015
  • Mathematica
    (* version >= 6 *)(#/2 + NextPrime[#]/2) & /@
    Select[Prime[Range[5000000]], PrimePowerQ[#/2 + NextPrime[#]/2] &]
    (* Wouter Meeussen, Oct 26 2015 *)
  • PARI
    {for(i=1,10^8,if(isprimepower(i)>1&&i==(precprime(i-1)+nextprime(i+1))/2,print1(i,", ")))}
Showing 1-3 of 3 results.