cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263777 Number of inversion sequences avoiding pattern 201 (or 210).

Original entry on oeis.org

1, 1, 2, 6, 24, 118, 674, 4306, 29990, 223668, 1763468, 14558588, 124938648, 1108243002, 10115202962, 94652608690, 905339525594, 8829466579404, 87618933380020, 883153699606024, 9028070631668540, 93478132393544988, 979246950529815364, 10368459385853924212
Offset: 0

Views

Author

Michel Marcus, Oct 26 2015

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_, ] /; k >= n = 0; T[n, k_, -1] := (n-k)/n*Binomial[n+k-1, k];
    T[n_, k_, p_] := T[n, k, p] = Sum[T[n-1, k, i], {i, -1, p}] + Sum[T[n-1, j, p], {j, p+1, k}];
    a[0] = 1; a[n_] := Sum[T[n, k, p], {k, 0, n-1}, {p, -1, k-1}];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    seq(N) = {
      my(a=vector(N), t=vector(2, k, matrix(N, N)), s=matrix(N+1,N+1),
         C=(n,k)->(n-k)/n*binomial(n-1+k, k));
      for (n=1, N, for (k=1, n, for(p=1, k-1,
          s[k+1,p+1] = s[k+1,p] + t[1+n%2][k,p];
          s[p+1,k+1] = s[p+1,k] + t[1+n%2][k,p];
          t[1+(n+1)%2][k, p] = s[k+1,p+1] + s[p+1,k+1] + C(n-1,k-1)));
        a[n] = sum(k=1, n, sum(p=1, k-1, t[1+(n+1)%2][k, p])) + C(n+1, n));
      a;
    };
    concat(1, seq(23)) \\ Gheorghe Coserea, Nov 20 2017

Formula

a(n) = Sum_{k=0..n-1} Sum_{p=-1,k-1} T(n,k,p), where T(n,k,p) = Sum_{i=-1..p} T(n-1,k,i) + Sum_{j=p+1..k} T(n-1,j,p) with initial conditions T(n,k,p) = 0 if k >= n and T(n,k,-1) = (n-k)/n * binomial(n-1+k,k). (eqn. (4) and (5) in Corteel link) - Gheorghe Coserea, Sep 21 2017
a(n) ~ c * (27/2)^n / n^alfa, where alfa = 5.7667921227... and c = 9.973... - Vaclav Kotesovec, Oct 16 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 15 2016
More terms from Lars Blomberg, Jan 18 2017