cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263801 Partial sums of odd double factorials (A001147) with alternating signs.

Original entry on oeis.org

1, 0, 3, -12, 93, -852, 9543, -125592, 1901433, -32557992, 622171083, -13127139492, 303107003733, -7602746576892, 205855300099983, -5984428053529392, 185914355908981233, -6146745514853869392, 215496349961845902483, -7985298182676045656892
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 26 2015

Keywords

Examples

			For n = 4, a(4) = Sum_{k=0..4} (-1)^k*(2*k-1)!! = (-1)!! - 1!! + 3!! - 5!! + 7!! = 1 - 1 + 3 - 15 + 105 = 93.
G.f. = 1 + 3*x^2 - 12*x^3 + 93*x^4 - 852*x^5 + 9543*x^6 - 125592*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k (2k-1)!!, {k, 0, n}], {n, 0, 20}]
    Round@Table[(Sqrt[Pi] Erfc[1/Sqrt[2]] - Gamma[-n-1/2, 1/2] (2n+1)!!/(-2)^(n+1)) Sqrt[E/2], {n, 0, 20}]
  • PARI
    for(n=0,50, print1(sum(k=0,n, (-1)^k*(2*k)!/(2^k*k!)), ", ")) \\ G. C. Greubel, Apr 08 2017

Formula

a(n) = Sum_{k=0..n} (-1)^k*(2*k-1)!!.
a(n) = (sqrt(Pi)*erfc(1/sqrt(2))-Gamma(-n-1/2, 1/2)*(2*n+1)!!/(-2)^(n+1))*exp(1/2)/sqrt(2), where Gamma(a, x) is the upper incomplete Gamma function.
E.g.f.: 1/sqrt(2*x+1)+sqrt(Pi/2)*exp(x+1/2)*(erf(sqrt(x+1/2))-erf(1/sqrt(2))).
Recurrence: a(0) = 1, a(1) = 0, a(n+2) = (2*n+3)*a(n)-(2*n+2)*a(n+1).
0 = a(n)*(-2*a(n+1) + a(n+2) + a(n+3)) + a(n+1)*(+3*a(n+1) - 3*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n>=0. - Michael Somos, Oct 30 2015