cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263830 The number c_{Z^3,pi_1(B_2)}(2n) of 3-torus 2n-coverings over the second amphicosm.

Original entry on oeis.org

1, 5, 9, 23, 19, 53, 33, 93, 74, 119, 73, 255, 99, 213, 219, 363, 163, 482, 201, 581, 393, 485, 289, 1085, 422, 663, 634, 1047, 451, 1463, 513, 1417, 897, 1103, 915, 2374, 723, 1365, 1227, 2511, 883, 2661, 969, 2399, 2078, 1973, 1153, 4419
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/2 Sum[Sum[(d^2 + 3/2 + 1/2 (-1)^Mod[d, 2] + (-1)^Mod[Quotient[n, d m], 2] + (-1)^Mod[d+Quotient[n, d m], 2])m, {m, Divisors[Quotient[n, d] ]}], {d, Divisors[n]}];
    Array[a, 48] (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
  • PARI
    a(n) = {
      1/2 * sumdiv(n, d, sumdiv(n\d, m,
      (sqr(d) + 3/2 + 1/2*(-1)^(d%2) + (-1)^((n\(d*m))%2) +
      (-1)^((d + n\(d*m))%2)) * m));
    };
    vector(48, n, a(n))  \\ Gheorghe Coserea, May 05 2016

Extensions

More terms from Gheorghe Coserea, May 05 2016