A263882 Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n).
1, 5, 35, 2915, 30771, 4037381, 48954659, 7782070631, 17875901604959, 242158352370063, 637739431824553035, 126348774791431208099, 1794903484322270273951, 367972191114796344623951, 1116504994413003106003899551, 3498520498083111051973370669639
Offset: 2
Keywords
Examples
a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.
References
- R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.
Links
- Robert Israel, Table of n, a(n) for n = 2..260
- C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical Journal, 1 (1819), 46-49.
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- J. Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
- Wikipedia, Wolstenholme's theorem
- J. Wolstenholme, On certain properties of prime numbers, Quarterly Journal of Pure and Applied Mathematics, 5 (1862), 35-39.
Programs
-
Magma
[(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // Vincenzo Librandi, Nov 25 2015
-
Maple
map(p -> (binomial(2*p-1,p-1)-1)/p^2, select(isprime,[seq(i,i=3..100,2)])); # Robert Israel, Nov 24 2015
-
Mathematica
Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}] Table[(Binomial[2p-1,p-1]-1)/p^2,{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 20 2019 *)
Comments