A034602
Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).
Original entry on oeis.org
1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3
Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
- R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.
- Robert Israel, Table of n, a(n) for n = 3..263
- R. R. Aidagulov and M. A. Alekseyev. On p-adic approximation of sums of binomial coefficients. Journal of Mathematical Sciences 233:5 (2018), 626-634. doi:10.1007/s10958-018-3948-0 arXiv:1602.02632
- R. J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica 71:4 (1995), 381-389.
- Romeo Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Jonathan Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
-
[(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
-
f:= proc(n) local p;
p:= ithprime(n);
(binomial(2*p-1,p)-1)/p^3
end proc:
map(f, [$3..30]); # Robert Israel, Dec 19 2018
-
Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)
A088164
Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).
Original entry on oeis.org
- Richard K. Guy, Unsolved Problems in Number Theory, Sect. B31.
- Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (Springer, 1979).
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 23.
- Ronald Bruck, Wolstenholme's Theorem, Stirling Numbers, and Binomial Coefficients.
- Joe Buhler, Richard Crandall, Reijo Ernvall and Tauno Metsänkylä, Irregular primes and cyclotomic invariants to four million, Math. Comp., Vol. 61, No. 203 (1993), pp. 151-153.
- Chris Caldwell, The Prime Glossary, Wolstenholme prime.
- Leonardo Carofiglio, Luigi De Filpo, and Alessandro Gambini, p-adic valuation of harmonic sums and their connections with Wolstenholme primes, arXiv:2303.15010 [math.NT], 2023.
- Keith Conrad, The p-adic growth of harmonic sums.
- Shehzad Hathi, Michael J. Mossinghoff, and Timothy S. Trudgian, Wolstenholme and Vandiver primes, The Ramanujan Journal, (2021); arXiv version, 2101.11157 [math.NT], 2021.
- Richard J. McIntosh, On the converse of Wolstenholme's theorem, Acta Arithmetica, Vol. 71, No. 4 (1995), pp. 381-389.
- Richard J. McIntosh and Eric L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp. Vol 76, No. 260 (2007), pp. 2087-2094.
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
- Romeo Meštrović, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.8.4.
- Romeo Meštrović, Congruences for Wolstenholme Primes, arXiv:1108.4178 [math.NT], 2011.
- Romeo Meštrović, Congruences for Wolstenholme Primes, Czechoslovak Mathematical Journal, Vol. 65 (2015), pp. 237-253.
- Romeo Meštrović, A congruence modulo n^3 involving two consecutive sums of powers and its applications, arXiv:1211.4570 [math.NT], 2012.
- Romeo Meštrović, Several generalizations and variations of Chu-Vandermonde identity, arXiv:1807.10604 [math.CO], 2018.
- Jonathan Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, CANT 2015 and 2016, New York, 2017, pp. 269-277; arXiv:1812.07650 [math.NT], 2018.
- Eric Weisstein's World of Mathematics, Wolstenholme Prime.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes.
- Wikipedia, Wolstenholme prime.
- Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem, J. Number Theory, Vol. 123 (2007), pp. 18-26.
Cf.
A000984,
A001008,
A007406,
A027641,
A034602,
A099908,
A246130,
A246132,
A246133,
A246134,
A263882,
A267824,
A298946.
-
[p: p in PrimesUpTo(2*10^4)| (Binomial(2*p-1,p-1) mod (p^4)eq 1)]; // Vincenzo Librandi, May 02 2015
-
For[i = 2, i <= 20000, i++, {If[PrimeQ[i] && Mod[Binomial[2*i - 1, i - 1], i^4] == 1, Print[i]]}] (* Dylan Delgado, Mar 02 2021 *)
-
forprime(n=2, 10^9, if(Mod(binomial(2*n-1, n-1), n^4)==1, print1(n, ", "))); \\ Felix Fröhlich, May 18 2014
A267824
Composite numbers n such that binomial(2n-1, n-1) == 1 (mod n^2).
Original entry on oeis.org
283686649, 4514260853041
Offset: 1
a(1) = 16843^2 and a(2) = 2124679^2 are squares of Wolstenholme primes A088164.
- Richard J. McIntosh, On the converse of Wolstenholme's Theorem, Acta Arithmetica, 71 (1995), 381-389.
- J. Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
Cf.
A000984,
A034602,
A082180,
A088164,
A099905,
A099906,
A099907,
A099908,
A136327,
A177783,
A212557,
A228562,
A242473,
A244214,
A244919,
A246130,
A246132,
A246133,
A246134,
A260209,
A260210,
A263429,
A263882,
A281302.
Showing 1-3 of 3 results.
Comments