cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034602 Wolstenholme quotient W_p = (binomial(2p-1,p) - 1)/p^3 for prime p=A000040(n).

Original entry on oeis.org

1, 5, 265, 2367, 237493, 2576561, 338350897, 616410400171, 7811559753873, 17236200860123055, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067, 59296957594629000880904587621, 844326030443651782154010715715
Offset: 3

Views

Author

Keywords

Comments

Equivalently, (binomial(2p,p)-2)/(2*p^3) where p runs through the primes >=5.
The values of this sequence's terms are replicated by conjectured general formula, given in A223886 (and also added to the formula section here) for k=2, j=1 and n>=3. - Alexander R. Povolotsky, Apr 18 2013

Examples

			Binomial(10,5)-2 = 250; 5^3=125 hence a(5)=1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.

Crossrefs

Cf. A177783 (alternative definition of Wolstenholme quotient), A072984, A092101, A092103, A092193, A128673, A217772, A223886, A263882.

Programs

  • Magma
    [(Binomial(2*p-1,p)-1) div p^3: p in PrimesInInterval(4,100)]; // Vincenzo Librandi, Nov 23 2015
  • Maple
    f:= proc(n) local p;
    p:= ithprime(n);
    (binomial(2*p-1,p)-1)/p^3
    end proc:
    map(f, [$3..30]); # Robert Israel, Dec 19 2018
  • Mathematica
    Table[(Binomial[2 Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^3, {n, 3, 20}] (* Vincenzo Librandi, Nov 23 2015 *)

Formula

a(n) = (A088218(p)-1)/p^3 = (A001700(p-1)-1)/p^3 = (A000984(p)-2)/(2*p^3), where p=A000040(n).
a(n) = A087754(n)/2.
a(n) = (binomial(j*k*prime(n), j*prime(n)) - binomial(k*j, j)) / (k*prime(n)^3) for k=2, j=1, and n>=3. - Alexander R. Povolotsky, Apr 18 2013
a(n) = A263882(n)/prime(n) for n > 2. - Jonathan Sondow, Nov 23 2015
a(n) = numerator(tanh(Sum_{k=1..p-1} artanh(k/p)))/p^3, where p = prime(n) for n >= 3. - Thomas Ordowski, Apr 17 2025

Extensions

Edited by Max Alekseyev, May 14 2010
More terms from Vincenzo Librandi, Nov 23 2015

A088164 Wolstenholme primes: primes p such that binomial(2p-1,p-1) == 1 (mod p^4).

Original entry on oeis.org

16843, 2124679
Offset: 1

Views

Author

Christian Schroeder, Sep 21 2003

Keywords

Comments

McIntosh and Roettger showed that the next term, if it exists, must be larger than 10^9. - Felix Fröhlich, Aug 23 2014
When cb(m)=binomial(2m,m) denotes m-th central binomial coefficient then, obviously, cb(a(n))=2 mod a(n)^4. I have verified that among all naturals 1A246134). One might therefore wonder whether this is true in general. - Stanislav Sykora, Aug 26 2014
Romeo Mestrovic, Congruences for Wolstenholme Primes, Lemma 2.3, shows that the criterion for p to be a Wolstenholme prime is equivalent to p dividing A027641(p-3). In 1847 Cauchy proved that this was a necessary condition for the failure of the first case of Fermat's Last Theorem for the exponent p (see Ribenboim, 13 Lectures, p. 29). - John Blythe Dobson, May 01 2015
Primes p such that p^3 divides A001008(p-1) (Zhao, 2007, p. 18). Also: Primes p such that (p, p-3) is an irregular pair (cf. Buhler, Crandall, Ernvall, Metsänkylä, 1993, p. 152). Keith Conrad observes that for the two known (as of 2015) terms ord_p(H_p-1) = 3 is satisfied, where ord_p(H_p-1) gives the p-adic valuation of H_p-1 (cf. Conrad, p. 5). Romeo Mestrovic conjectures that p is a Wolstenholme prime if and only if S_(p-2)(p) == 0 (mod p^3), where S_k(i) denotes the sum of the k-th powers of the positive integers up to and including (i-1) (cf. Mestrovic, 2012, conjecture 2.10). - Felix Fröhlich, May 20 2015
Primes p that divide the Wolstenholme quotient W_p (A034602). Also, primes p such that p^2 divides the Babbage quotient b_p (A263882). - Jonathan Sondow, Nov 24 2015
The only known composite numbers n such that binomial(2n-1, n-1) is congruent to 1 mod n^2 are the numbers n = p^2 where p is a Wolstenholme prime: see A267824. - Jonathan Sondow, Jan 27 2016
The converse of Wolstenholme's theorem implies that if an integer n satisfies the congruence binomial(2*n-1, n-1) == 1 (mod n^4), then n is a term of this sequence, i.e., then n is necessarily prime, or, equivalently, A298946(i) > 1 for all i > 0. Whether this is true for all such n is an open problem. - Felix Fröhlich, Feb 21 2018
Primes p such that binomial(2*p-1, p-1) == 1-2*p*Sum_{k=1..p-1} 1/k - 2*p^2*Sum_{k=1..p-1} 1/k^2 (mod p^7) (cf. Mestrovic, 2011, Corollary 4). - Felix Fröhlich, Feb 21 2018
These are primes p such that p^2 divides A007406(p-1) (Mestrovic, 2015, p. 241, Lemma 2.3). - Amiram Eldar and Thomas Ordowski, Jul 29 2019
If a third Wolstenholme prime exists it is larger than 6*10^10 (cf. Hathi, Mossinghoff, Trudgian, 2021). - Felix Fröhlich, Apr 27 2021
Named after the English mathematician Joseph Wolstenholme (1829-1891). - Amiram Eldar, Jun 10 2021
Primes p such that tanh(Sum_{k=1..p-1} artanh(k/p)) == 0 (mod p^4). - Thomas Ordowski, Apr 17 2025

References

  • Richard K. Guy, Unsolved Problems in Number Theory, Sect. B31.
  • Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem (Springer, 1979).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 23.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^4)| (Binomial(2*p-1,p-1) mod (p^4)eq 1)]; // Vincenzo Librandi, May 02 2015
  • Mathematica
    For[i = 2, i <= 20000, i++, {If[PrimeQ[i] && Mod[Binomial[2*i - 1, i - 1], i^4] == 1, Print[i]]}] (* Dylan Delgado, Mar 02 2021 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(binomial(2*n-1, n-1), n^4)==1, print1(n, ", "))); \\ Felix Fröhlich, May 18 2014
    

Formula

A000984(a(n)) = 2 mod a(n)^4. - Stanislav Sykora, Aug 26 2014
A099908(a(n)) == 1 mod a(n)^4. - Jonathan Sondow, Nov 24 2015
A034602(PrimePi(a(n))) == 0 mod a(n) and A263882(PrimePi(a(n))) == 0 mod a(n)^2. - Jonathan Sondow, Dec 03 2015

A267824 Composite numbers n such that binomial(2n-1, n-1) == 1 (mod n^2).

Original entry on oeis.org

283686649, 4514260853041
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2016

Keywords

Comments

Babbage proved the congruence holds if n > 2 is prime.
See A088164 and A263882 for references, links, and additional comments.
Conjecture: n is a term if and only if n = A088164(i)^2 for some i >= 1 (cf. McIntosh, 1995, p. 385). - Felix Fröhlich, Jan 27 2016
The "if" part of the conjecture is true: see the McIntosh reference. - Jonathan Sondow, Jan 28 2016
The above conjecture implies that this sequence and A228562 are disjoint. - Felix Fröhlich, Jan 27 2016
Composites c such that A281302(c) > 1. - Felix Fröhlich, Feb 21 2018

Examples

			a(1) = 16843^2 and a(2) = 2124679^2 are squares of Wolstenholme primes A088164.
		

Crossrefs

Showing 1-3 of 3 results.