cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A339531 Numbers b > 1 such that the smallest two primes, i.e., 2 and 3 are base-b Wieferich primes.

Original entry on oeis.org

17, 37, 53, 73, 89, 109, 125, 145, 161, 181, 197, 217, 233, 253, 269, 289, 305, 325, 341, 361, 377, 397, 413, 433, 449, 469, 485, 505, 521, 541, 557, 577, 593, 613, 629, 649, 665, 685, 701, 721, 737, 757, 773, 793, 809, 829, 845, 865, 881, 901, 917, 937, 953
Offset: 1

Views

Author

Felix Fröhlich, Dec 08 2020

Keywords

Crossrefs

Cf. A256236, A263941. Row 1 of A319059.
Cf. smallest k primes are base-b Wieferich primes: A339532 (k=3), A339533 (k=4), A339534 (k=5), A339535 (k=6), A339536 (k=7), A339537 (k=8).

Programs

  • Mathematica
    Select[Range[2, 10^3], Function[b, AllTrue[{2, 3}, PowerMod[b, (# - 1), #^2] == 1 &]]] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    is(n) = forprime(p=1, 3, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1

Formula

a(n) = 4*A263941(n) + 1 for n>=2, a(n) = 4*floor((9*n)/2) + 1 for all n. - Hugo Pfoertner, Dec 08 2020
From Chai Wah Wu, Aug 18 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
G.f.: x*(-x^2 + 20*x + 17)/((x - 1)^2*(x + 1)). (End)

A258589 Minimal most likely sum for a roll of n 12-sided dice.

Original entry on oeis.org

1, 13, 19, 26, 32, 39, 45, 52, 58, 65, 71, 78, 84, 91, 97, 104, 110, 117, 123, 130, 136, 143, 149, 156, 162, 169, 175, 182, 188, 195, 201, 208, 214, 221, 227, 234, 240, 247, 253, 260, 266, 273, 279, 286, 292, 299, 305, 312, 318, 325, 331, 338, 344, 351, 357
Offset: 1

Views

Author

Gianmarco Giordano, Nov 06 2015

Keywords

Examples

			For n=1, there are twelve equally likely outcomes, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and the smallest of these is 1, so a(1)=1.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(26 n + (-1)^n - 1)/4, {n, 2, 50}]]
  • PARI
    a(n)=if(n<2, 1, 13*n\2);
    vector(50, n, a(n))
    
  • PARI
    a(n) = if(n<2,n, (26*n + (-1)^n - 1)/4);
    vector(50, n, a(n))
    
  • PARI
    Vec(-x*(5*x^3-5*x^2-12*x-1)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Nov 06 2015

Formula

a(n) = floor(13*n/2) = (26*n + (-1)^n - 1)/4 with n>1, a(1)=1.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: -x*(5*x^3-5*x^2-12*x-1) / ((x-1)^2*(x+1)). - Colin Barker, Nov 06 2015

A258588 Minimal most likely sum for a roll of n 10-sided dice.

Original entry on oeis.org

1, 11, 16, 22, 27, 33, 38, 44, 49, 55, 60, 66, 71, 77, 82, 88, 93, 99, 104, 110, 115, 121, 126, 132, 137, 143, 148, 154, 159, 165, 170, 176, 181, 187, 192, 198, 203, 209, 214, 220, 225, 231, 236, 242, 247, 253, 258, 264, 269, 275
Offset: 1

Views

Author

Gianmarco Giordano, Nov 06 2015

Keywords

Examples

			For n=1, there are ten equally likely outcomes, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and the smallest of these is 1, so a(1)=1.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(22 n + (-1)^n - 1)/4, {n, 2, 50}]]
  • PARI
    a(n)=if(n<2, 1,11*n\2);
    vector(50, n, a(n))

Formula

G.f.: x*(1 + 10*x + 4*x^2 - 4*x^3)/((1 - x)^2*(1 + x)).
a(n) = floor(11*n/2) = (22*n + (-1)^n - 1)/4 with n>1, a(1)=1.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
Showing 1-3 of 3 results.