A263942
Positive integers n such that (n+4)^3 - n^3 is a square.
Original entry on oeis.org
6, 28, 110, 416, 1558, 5820, 21726, 81088, 302630, 1129436, 4215118, 15731040, 58709046, 219105148, 817711550, 3051741056, 11389252678, 42505269660, 158631825966, 592022034208, 2209456310870, 8245803209276, 30773756526238, 114849222895680, 428623135056486
Offset: 1
6 is in the sequence because (6+4)^3 - 6^3 = 28^2.
-
LinearRecurrence[{5, -5, 1}, {6, 28, 110}, 30] (* Paolo Xausa, Mar 04 2024 *)
-
Vec(2*x*(x-3)/((x-1)*(x^2-4*x+1)) + O(x^40))
A263943
Positive integers n such that (n+21)^3 - n^3 is a square.
Original entry on oeis.org
7, 119, 4564, 32900, 1161895, 8359127, 295119412, 2123188004, 74959171399, 539281396535, 19039334418580, 136975351534532, 4835915983150567, 34791200008377239, 1228303620385828084, 8836827826776286820, 311984283662017185415, 2244519476801168477687
Offset: 1
7 is in the sequence because (7+21)^3 - 7^3 = 147^2.
-
LinearRecurrence[{1,254,-254,-1,1},{7,119,4564,32900,1161895},20] (* Harvey P. Dale, Jan 11 2017 *)
-
Vec(7*x*(4*x^4+16*x^3-381*x^2-16*x-1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^30))
A263944
Positive integers n such that (n+28)^3 - n^3 is a square.
Original entry on oeis.org
28, 189, 959, 4648, 22323, 107009, 512764, 2456853, 11771543, 56400904, 270233019, 1294764233, 6203588188, 29723176749, 142412295599, 682338301288, 3269279210883, 15664057753169, 75051009555004, 359590990021893, 1722903940554503, 8254928712750664
Offset: 1
189 is in the sequence because (189+28)^3 - 189^3 = 1862^2.
-
LinearRecurrence[{6,-6,1},{28,189,959},30] (* Harvey P. Dale, Dec 14 2016 *)
-
Vec(7*x*(x-4)*(x+1)/((x-1)*(x^2-5*x+1)) + O(x^40))
A263945
Positive integers n such that (n+39)^3 - n^3 is a square.
Original entry on oeis.org
26, 871, 59930, 1155895, 77814386, 1500376111, 101003038370, 1947487061455, 131101866015146, 2527836705417751, 170170121084646410, 3281130096145204615, 220880686066005050306, 4258904336959770197791, 286702960343553470676050, 5528054548243685571553375
Offset: 1
26 is in the sequence because (26+39)^3 - 26^3 = 507^2.
-
LinearRecurrence[{1,1298,-1298,-1,1},{26,871,59930,1155895,77814386},20] (* Harvey P. Dale, Mar 25 2020 *)
-
Vec(13*x*(5*x^4+65*x^3-1947*x^2-65*x-2)/((x-1)*(x^2-36*x-1)*(x^2+36*x-1)) + O(x^30))
A263946
Positive integers n such that (n+52)^3 - n^3 is a square.
Original entry on oeis.org
26, 2626, 132522, 6624722, 331104826, 16548617826, 827099787722, 41338440769522, 2066094938689626, 103263408493713026, 5161104329746962922, 257951953078854434322, 12892436549612974754426, 644363875527569883288226, 32205301339828881189658122
Offset: 1
26 is in the sequence because (26+52)^3 - 26^3 = 676^2.
-
LinearRecurrence[{51,-51,1},{26,2626,132522},20] (* Harvey P. Dale, Feb 05 2019 *)
-
Vec(26*x*(3*x^2-50*x-1)/((x-1)*(x^2-50*x+1)) + O(x^30))
A263947
Positive integers n such that (n+57)^3 - n^3 is a square.
Original entry on oeis.org
551, 13471, 67002512, 1560515752, 7745359676111, 180392503180711, 895348087775371352, 20853012581126608912, 103500448242912021166871, 2410566548172681237123151, 11964444815088795735075876992, 278656671814812593067838694872, 1383065891631134161140389210648831
Offset: 1
551 is in the sequence because (551+57)^3 - 551^3 = 7581^2.
-
LinearRecurrence[{1, 115598, -115598, -1, 1}, {551, 13471, 67002512, 1560515752, 7745359676111}, 15] (* Paolo Xausa, Mar 05 2024 *)
-
Vec(19*x*(32*x^4+680*x^3-173397*x^2-680*x-29)/((x-1)*(x^2-340*x+1)*(x^2+340*x+1)) + O(x^20))
A263948
Positive integers n such that (n+61)^3 - n^3 is a square.
Original entry on oeis.org
244, 267607, 260678620, 253900737919, 247299058084132, 240869028673236295, 234606186628674096844, 228506184907299897119407, 222564789493523471120235220, 216777876460506953571212014519, 211141429107744279254889381935932, 205651535173066467487308686793612895
Offset: 1
244 is in the sequence because (244+61)^3 - 244^3 = 3721^2.
-
LinearRecurrence[{975, -975, 1}, {244, 267607, 260678620}, 15] (* Paolo Xausa, Mar 05 2024 *)
-
Vec(61*x*(5*x^2-487*x-4)/((x-1)*(x^2-974*x+1)) + O(x^15))
Showing 1-7 of 7 results.