cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A071954 a(n) = 4*a(n-1) - a(n-2) - 4, with a(0) = 2, a(1) = 4.

Original entry on oeis.org

2, 4, 10, 32, 114, 420, 1562, 5824, 21730, 81092, 302634, 1129440, 4215122, 15731044, 58709050, 219105152, 817711554, 3051741060, 11389252682, 42505269664, 158631825970, 592022034212, 2209456310874, 8245803209280, 30773756526242, 114849222895684
Offset: 0

Views

Author

Lekraj Beedassy, Jun 25 2002

Keywords

Comments

a(n) gives the side of a cube having a square number of cubes in its two outermost layers, i.e., solutions p to the equation p^3 - (p - 4)^3 = q^2. The corresponding q is given by 4*A001075(n).

Examples

			G.f. = 2 + 4*x + 10*x^2 + 32*x^3 + 114*x^4 + 420*x^5 + 1562*x^6 + ...
		

References

  • M. E. Larsen, "Four Cubes" in Puzzler's Tribute, Ed. D. Wolfe & T. Rodgers, pp. 69-70, A. K. Peters, MA, 2002

Crossrefs

Equals A052530(n) + 2, n > 0.

Programs

  • GAP
    a:=[2,4,10];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
  • Haskell
    a071954 n = a071954_list !! n
    a071954_list = 2 : 4 : zipWith (-)
                   (map ((4 *) . pred) (tail a071954_list)) a071954_list
    -- Reinhard Zumkeller, Aug 11 2011
    
  • Magma
    I:=[2,4,10]; [n le 3 select I[n] else 5*Self(n-1) -5*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    a[n_]:= a[n] = 4*a[n-1] -a[n-2] -4; a[0]=2; a[1]=4; Table[a[n], {n,0,30}]
    LinearRecurrence[{5,-5,1},{2,4,10},30] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    Vec((2-6*x)/(1-5*x+5*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Feb 09 2012
    
  • PARI
    {a(n) = my(w=quadgen(12)); simplify( 2 + ((2+w)^n - (2-w)^n) / w)}; /* Michael Somos, Nov 03 2016 */
    
  • Sage
    (2*(1-3*x)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) for n > 2, with a(0) = 2, a(1) = 4, a(2) = 10.
G.f.: 2*(1 - 3*x)/((1-x)*(1 -4*x +x^2)). - Harvey P. Dale, May 05 2011
a(n) = (2 + (-(2 - sqrt(3))^n + (2 + sqrt(3))^n)/sqrt(3)). - Colin Barker, Nov 03 2016
A263942(n) = -a(-1-n) for all n in Z. - Michael Somos, Nov 03 2016
E.g.f.: (2/3)*(3*exp(x) + sqrt(3)*exp(2*x)*sinh(sqrt(3)*x)). - Franck Maminirina Ramaharo, Nov 14 2018
From G. C. Greubel, Feb 25 2019: (Start)
a(n) = 2*A072110(n).
a(n) = 2*(1 - (-i)^(n+1)*F(n, 4*i)), where i=sqrt(-1) and F(n,x) is the Fibonacci polynomial. (End)

Extensions

Edited by Robert G. Wilson v, Jun 27 2002

A263943 Positive integers n such that (n+21)^3 - n^3 is a square.

Original entry on oeis.org

7, 119, 4564, 32900, 1161895, 8359127, 295119412, 2123188004, 74959171399, 539281396535, 19039334418580, 136975351534532, 4835915983150567, 34791200008377239, 1228303620385828084, 8836827826776286820, 311984283662017185415, 2244519476801168477687
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			7 is in the sequence because (7+21)^3 - 7^3 = 147^2.
		

Crossrefs

Cf. A263942 (4), A263944 (28), A263945 (39), A263946 (52), A263947 (57), A263948 (61), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{1,254,-254,-1,1},{7,119,4564,32900,1161895},20] (* Harvey P. Dale, Jan 11 2017 *)
  • PARI
    Vec(7*x*(4*x^4+16*x^3-381*x^2-16*x-1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^30))

Formula

a(n) = a(n-1)+254*a(n-2)-254*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 7*x*(4*x^4+16*x^3-381*x^2-16*x-1) / ((x-1)*(x^2-16*x+1)*(x^2+16*x+1)).

A263944 Positive integers n such that (n+28)^3 - n^3 is a square.

Original entry on oeis.org

28, 189, 959, 4648, 22323, 107009, 512764, 2456853, 11771543, 56400904, 270233019, 1294764233, 6203588188, 29723176749, 142412295599, 682338301288, 3269279210883, 15664057753169, 75051009555004, 359590990021893, 1722903940554503, 8254928712750664
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			189 is in the sequence because (189+28)^3 - 189^3 = 1862^2.
		

Crossrefs

Cf. A263942 (4), A263943 (21), A263945 (39), A263946 (52), A263947 (57), A263948 (61), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{6,-6,1},{28,189,959},30] (* Harvey P. Dale, Dec 14 2016 *)
  • PARI
    Vec(7*x*(x-4)*(x+1)/((x-1)*(x^2-5*x+1)) + O(x^40))

Formula

a(n) = 6*a(n-1)-6*a(n-2)+a(n-3) for n>3.
G.f.: 7*x*(x-4)*(x+1) / ((x-1)*(x^2-5*x+1)).
a(n) = 7*(-2+(2^(-1-n)*((5-sqrt(21))^n*(-7+sqrt(21))+(5+sqrt(21))^n*(7+sqrt(21))))/sqrt(21)). - Colin Barker, Mar 05 2016

A263945 Positive integers n such that (n+39)^3 - n^3 is a square.

Original entry on oeis.org

26, 871, 59930, 1155895, 77814386, 1500376111, 101003038370, 1947487061455, 131101866015146, 2527836705417751, 170170121084646410, 3281130096145204615, 220880686066005050306, 4258904336959770197791, 286702960343553470676050, 5528054548243685571553375
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			26 is in the sequence because (26+39)^3 - 26^3 = 507^2.
		

Crossrefs

Cf. A263942 (4), A263943 (21), A263944 (28), A263946 (52), A263947 (57), A263948 (61), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{1,1298,-1298,-1,1},{26,871,59930,1155895,77814386},20] (* Harvey P. Dale, Mar 25 2020 *)
  • PARI
    Vec(13*x*(5*x^4+65*x^3-1947*x^2-65*x-2)/((x-1)*(x^2-36*x-1)*(x^2+36*x-1)) + O(x^30))

Formula

a(n) = a(n-1)+1298*a(n-2)-1298*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 13*x*(5*x^4+65*x^3-1947*x^2-65*x-2) / ((x-1)*(x^2-36*x-1)*(x^2+36*x-1)).

A263946 Positive integers n such that (n+52)^3 - n^3 is a square.

Original entry on oeis.org

26, 2626, 132522, 6624722, 331104826, 16548617826, 827099787722, 41338440769522, 2066094938689626, 103263408493713026, 5161104329746962922, 257951953078854434322, 12892436549612974754426, 644363875527569883288226, 32205301339828881189658122
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			26 is in the sequence because (26+52)^3 - 26^3 = 676^2.
		

Crossrefs

Cf. A263942 (4), A263943 (21), A263944 (28), A263945 (39), A263947 (57), A263948 (61), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{51,-51,1},{26,2626,132522},20] (* Harvey P. Dale, Feb 05 2019 *)
  • PARI
    Vec(26*x*(3*x^2-50*x-1)/((x-1)*(x^2-50*x+1)) + O(x^30))

Formula

a(n) = 51*a(n-1)-51*a(n-2)+a(n-3) for n>3.
G.f.: 26*x*(3*x^2-50*x-1) / ((x-1)*(x^2-50*x+1)).
a(n) = 26*(-6-(6+sqrt(39))*(25+4*sqrt(39))^(-n)+(-6+sqrt(39))*(25+4*sqrt(39))^n)/6. - Colin Barker, Mar 03 2016

A263947 Positive integers n such that (n+57)^3 - n^3 is a square.

Original entry on oeis.org

551, 13471, 67002512, 1560515752, 7745359676111, 180392503180711, 895348087775371352, 20853012581126608912, 103500448242912021166871, 2410566548172681237123151, 11964444815088795735075876992, 278656671814812593067838694872, 1383065891631134161140389210648831
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			551 is in the sequence because (551+57)^3 - 551^3 = 7581^2.
		

Crossrefs

Cf. A263942 (4), A263943 (21), A263944 (28), A263945 (39), A263946 (52), A263948 (61), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{1, 115598, -115598, -1, 1}, {551, 13471, 67002512, 1560515752, 7745359676111}, 15] (* Paolo Xausa, Mar 05 2024 *)
  • PARI
    Vec(19*x*(32*x^4+680*x^3-173397*x^2-680*x-29)/((x-1)*(x^2-340*x+1)*(x^2+340*x+1)) + O(x^20))

Formula

a(n) = a(n-1)+115598*a(n-2)-115598*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 19*x*(32*x^4+680*x^3-173397*x^2-680*x-29) / ((x-1)*(x^2-340*x+1)*(x^2+340*x+1)).

A263948 Positive integers n such that (n+61)^3 - n^3 is a square.

Original entry on oeis.org

244, 267607, 260678620, 253900737919, 247299058084132, 240869028673236295, 234606186628674096844, 228506184907299897119407, 222564789493523471120235220, 216777876460506953571212014519, 211141429107744279254889381935932, 205651535173066467487308686793612895
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			244 is in the sequence because (244+61)^3 - 244^3 = 3721^2.
		

Crossrefs

Cf. A263942 (4), A263943 (21), A263944 (28), A263945 (39), A263946 (52), A263947 (57), A263949 (84) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{975, -975, 1}, {244, 267607, 260678620}, 15] (* Paolo Xausa, Mar 05 2024 *)
  • PARI
    Vec(61*x*(5*x^2-487*x-4)/((x-1)*(x^2-974*x+1)) + O(x^15))

Formula

a(n) = 975*a(n-1)-975*a(n-2)+a(n-3) for n>3.
G.f.: 61*x*(5*x^2-487*x-4) / ((x-1)*(x^2-974*x+1)).

A263949 Positive integers n such that (n+84)^3 - n^3 is a square.

Original entry on oeis.org

28, 476, 1106, 8218, 18256, 131600, 291578, 2097970, 4647580, 33436508, 74070290, 532886746, 1180477648, 8492752016, 18813572666, 135351146098, 299836685596, 2157125586140, 4778573397458, 34378658232730, 76157337674320, 547901406138128, 1213738829392250
Offset: 1

Views

Author

Colin Barker, Oct 30 2015

Keywords

Examples

			28 is in the sequence because (28+84)^3 - 28^3 = 1176^2.
		

Crossrefs

Cf. A263942 (4), A263943 (21), A263944 (28), A263945 (39), A263946 (52), A263947 (57), A263948 (61) where the parenthesized number is k in the expression (n+k)^3 - n^3.

Programs

  • Mathematica
    LinearRecurrence[{1, 16, -16, -1, 1}, {28, 476, 1106, 8218, 18256}, 30] (* Paolo Xausa, Mar 05 2024 *)
  • PARI
    Vec(14*x*(x^4+4*x^3-13*x^2-32*x-2)/((x-1)*(x^4-16*x^2+1)) + O(x^40))

Formula

a(n) = a(n-1)+16*a(n-2)-16*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: 14*x*(x^4+4*x^3-13*x^2-32*x-2) / ((x-1)*(x^4-16*x^2+1)).
Showing 1-8 of 8 results.