A071954
a(n) = 4*a(n-1) - a(n-2) - 4, with a(0) = 2, a(1) = 4.
Original entry on oeis.org
2, 4, 10, 32, 114, 420, 1562, 5824, 21730, 81092, 302634, 1129440, 4215122, 15731044, 58709050, 219105152, 817711554, 3051741060, 11389252682, 42505269664, 158631825970, 592022034212, 2209456310874, 8245803209280, 30773756526242, 114849222895684
Offset: 0
G.f. = 2 + 4*x + 10*x^2 + 32*x^3 + 114*x^4 + 420*x^5 + 1562*x^6 + ...
- M. E. Larsen, "Four Cubes" in Puzzler's Tribute, Ed. D. Wolfe & T. Rodgers, pp. 69-70, A. K. Peters, MA, 2002
-
a:=[2,4,10];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
-
a071954 n = a071954_list !! n
a071954_list = 2 : 4 : zipWith (-)
(map ((4 *) . pred) (tail a071954_list)) a071954_list
-- Reinhard Zumkeller, Aug 11 2011
-
I:=[2,4,10]; [n le 3 select I[n] else 5*Self(n-1) -5*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 25 2019
-
a[n_]:= a[n] = 4*a[n-1] -a[n-2] -4; a[0]=2; a[1]=4; Table[a[n], {n,0,30}]
LinearRecurrence[{5,-5,1},{2,4,10},30] (* Harvey P. Dale, May 05 2011 *)
-
Vec((2-6*x)/(1-5*x+5*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Feb 09 2012
-
{a(n) = my(w=quadgen(12)); simplify( 2 + ((2+w)^n - (2-w)^n) / w)}; /* Michael Somos, Nov 03 2016 */
-
(2*(1-3*x)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
A263943
Positive integers n such that (n+21)^3 - n^3 is a square.
Original entry on oeis.org
7, 119, 4564, 32900, 1161895, 8359127, 295119412, 2123188004, 74959171399, 539281396535, 19039334418580, 136975351534532, 4835915983150567, 34791200008377239, 1228303620385828084, 8836827826776286820, 311984283662017185415, 2244519476801168477687
Offset: 1
7 is in the sequence because (7+21)^3 - 7^3 = 147^2.
-
LinearRecurrence[{1,254,-254,-1,1},{7,119,4564,32900,1161895},20] (* Harvey P. Dale, Jan 11 2017 *)
-
Vec(7*x*(4*x^4+16*x^3-381*x^2-16*x-1)/((x-1)*(x^2-16*x+1)*(x^2+16*x+1)) + O(x^30))
A263944
Positive integers n such that (n+28)^3 - n^3 is a square.
Original entry on oeis.org
28, 189, 959, 4648, 22323, 107009, 512764, 2456853, 11771543, 56400904, 270233019, 1294764233, 6203588188, 29723176749, 142412295599, 682338301288, 3269279210883, 15664057753169, 75051009555004, 359590990021893, 1722903940554503, 8254928712750664
Offset: 1
189 is in the sequence because (189+28)^3 - 189^3 = 1862^2.
-
LinearRecurrence[{6,-6,1},{28,189,959},30] (* Harvey P. Dale, Dec 14 2016 *)
-
Vec(7*x*(x-4)*(x+1)/((x-1)*(x^2-5*x+1)) + O(x^40))
A263945
Positive integers n such that (n+39)^3 - n^3 is a square.
Original entry on oeis.org
26, 871, 59930, 1155895, 77814386, 1500376111, 101003038370, 1947487061455, 131101866015146, 2527836705417751, 170170121084646410, 3281130096145204615, 220880686066005050306, 4258904336959770197791, 286702960343553470676050, 5528054548243685571553375
Offset: 1
26 is in the sequence because (26+39)^3 - 26^3 = 507^2.
-
LinearRecurrence[{1,1298,-1298,-1,1},{26,871,59930,1155895,77814386},20] (* Harvey P. Dale, Mar 25 2020 *)
-
Vec(13*x*(5*x^4+65*x^3-1947*x^2-65*x-2)/((x-1)*(x^2-36*x-1)*(x^2+36*x-1)) + O(x^30))
A263946
Positive integers n such that (n+52)^3 - n^3 is a square.
Original entry on oeis.org
26, 2626, 132522, 6624722, 331104826, 16548617826, 827099787722, 41338440769522, 2066094938689626, 103263408493713026, 5161104329746962922, 257951953078854434322, 12892436549612974754426, 644363875527569883288226, 32205301339828881189658122
Offset: 1
26 is in the sequence because (26+52)^3 - 26^3 = 676^2.
-
LinearRecurrence[{51,-51,1},{26,2626,132522},20] (* Harvey P. Dale, Feb 05 2019 *)
-
Vec(26*x*(3*x^2-50*x-1)/((x-1)*(x^2-50*x+1)) + O(x^30))
A263947
Positive integers n such that (n+57)^3 - n^3 is a square.
Original entry on oeis.org
551, 13471, 67002512, 1560515752, 7745359676111, 180392503180711, 895348087775371352, 20853012581126608912, 103500448242912021166871, 2410566548172681237123151, 11964444815088795735075876992, 278656671814812593067838694872, 1383065891631134161140389210648831
Offset: 1
551 is in the sequence because (551+57)^3 - 551^3 = 7581^2.
-
LinearRecurrence[{1, 115598, -115598, -1, 1}, {551, 13471, 67002512, 1560515752, 7745359676111}, 15] (* Paolo Xausa, Mar 05 2024 *)
-
Vec(19*x*(32*x^4+680*x^3-173397*x^2-680*x-29)/((x-1)*(x^2-340*x+1)*(x^2+340*x+1)) + O(x^20))
A263948
Positive integers n such that (n+61)^3 - n^3 is a square.
Original entry on oeis.org
244, 267607, 260678620, 253900737919, 247299058084132, 240869028673236295, 234606186628674096844, 228506184907299897119407, 222564789493523471120235220, 216777876460506953571212014519, 211141429107744279254889381935932, 205651535173066467487308686793612895
Offset: 1
244 is in the sequence because (244+61)^3 - 244^3 = 3721^2.
-
LinearRecurrence[{975, -975, 1}, {244, 267607, 260678620}, 15] (* Paolo Xausa, Mar 05 2024 *)
-
Vec(61*x*(5*x^2-487*x-4)/((x-1)*(x^2-974*x+1)) + O(x^15))
A263949
Positive integers n such that (n+84)^3 - n^3 is a square.
Original entry on oeis.org
28, 476, 1106, 8218, 18256, 131600, 291578, 2097970, 4647580, 33436508, 74070290, 532886746, 1180477648, 8492752016, 18813572666, 135351146098, 299836685596, 2157125586140, 4778573397458, 34378658232730, 76157337674320, 547901406138128, 1213738829392250
Offset: 1
28 is in the sequence because (28+84)^3 - 28^3 = 1176^2.
-
LinearRecurrence[{1, 16, -16, -1, 1}, {28, 476, 1106, 8218, 18256}, 30] (* Paolo Xausa, Mar 05 2024 *)
-
Vec(14*x*(x^4+4*x^3-13*x^2-32*x-2)/((x-1)*(x^4-16*x^2+1)) + O(x^40))
Showing 1-8 of 8 results.
Comments