cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A263986 Difference between Catalan numbers and Fibonacci numbers: a(n) = C(n) - F(n).

Original entry on oeis.org

1, 0, 1, 3, 11, 37, 124, 416, 1409, 4828, 16741, 58697, 207868, 742667, 2674063, 9694235, 35356683, 129643193, 477636116, 1767259009, 6564113655, 24466256074, 91482545929, 343059584993, 1289904100956, 4861946326427, 18367352950759, 69533550719586
Offset: 0

Views

Author

Ran Pan, Oct 31 2015

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(2+4*n)*a(n)+(10+7*n)*a(1+n)+(-16-6*n)*a(n+2)+(-24-7*n)*a(n+3)+(28+6*n)*a(n+4)+(-6-n)*a(n+5), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 3, a(4) = 11}, a(n), remember):
    map(f, [$0..40]); # Robert Israel, Apr 26 2017
  • Mathematica
    RecurrenceTable[{(2+4n) a[n] + (10+7n) a[1+n] + (-16-6n) a[n+2] + (-24-7n) a[n+3] + (28+6n) a[n+4] + (-6-n) a[n+5] == 0, a[0] == 1, a[1] == 0, a[2] == 1, a[3] == 3, a[4] == 11}, a, {n, 0, 40}] (* Jean-François Alcover, Sep 16 2022, after Robert Israel *)
  • PARI
    a000108(n) = binomial(2*n, n)/(n+1)
    a(n) = a000108(n)-fibonacci(n) \\ Felix Fröhlich, Jun 07 2016

Formula

a(n) = (2*n)!/(n!*(n+1)!) - ((1+sqrt(5))^n-(1-sqrt(5))^n)/(2^n*sqrt(5)).
a(n) = A000108(n) - A000045(n).
G.f.: (1 - sqrt(1 - 4*x))/(2*x) - x/(1 - x - x^2).
a(n+1)/a(n) ~ 4.
Conjecture: (11*n-20)*(n-3)*(n+1)*a(n) +(-55*n^3+276*n^2-389*n+120)*a(n-1) +3*(11*n^3-64*n^2+125*n-80)*a(n-2) +2*(2*n-5)*(n-2)*(11*n-9)*a(n-3)=0. - R. J. Mathar, Jun 07 2016
Conjecture: +(n+1)*a(n) +2*(-3*n+1)*a(n-1) +(7*n-11)*a(n-2) +2*(3*n-7)*a(n-3) +(-7*n+25)*a(n-4) +2*(-2*n+9)*a(n-5)=0. - R. J. Mathar, Jun 07 2016
Conjectures confirmed since the g.f. satisfies the differential equations corresponding to these recurrences. - Robert Israel, Apr 26 2017
E.g.f.: (BesselI(0,2*x) - BesselI(1,2*x))*exp(2*x) - 2*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Jun 07 2016