A264285 T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 0,0 0,1 1,0 or -1,-2.
1, 4, 1, 8, 10, 1, 16, 32, 26, 1, 33, 102, 132, 69, 1, 69, 360, 675, 556, 181, 1, 145, 1228, 4189, 4484, 2324, 476, 1, 300, 4156, 23852, 47492, 29742, 9724, 1252, 1, 624, 14148, 134432, 448821, 537057, 197283, 40692, 3292, 1, 1300, 48188, 768664, 4227024
Offset: 1
Examples
Some solutions for n=4 k=4 ..7..0..9..2..3....7..1..9..2..4....0..1..9..2..3....0..1..9..2..3 .12..1..6..8..4....0.13..6..3..8....5.13..6..7..4...12..5.14..7..4 ..5.11.19.13.14....5.10.11.12.14...10.11.12..8.14...10..6.11..8.13 .10.23.16.17.18...22.15.16.18.19...22.15.24.17.18...15.23.16.17.19 .15.20.21.22.24...20.21.17.23.24...20.16.21.23.19...20.21.22.18.24
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) +3*a(n-3) +a(n-4)
k=3: a(n) = 3*a(n-1) +4*a(n-2) +4*a(n-3)
k=4: a(n) = 7*a(n-1) -2*a(n-2) -2*a(n-3) -6*a(n-4) +a(n-5) +3*a(n-6)
k=5: [order 28]
k=6: [order 36]
k=7: [order 34]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2) +2*a(n-3) +a(n-4) +a(n-5) -a(n-6)
n=2: a(n) = a(n-1) +4*a(n-2) +10*a(n-3) +12*a(n-4) +8*a(n-5) for n>7
n=3: [order 56]
Comments