A264398 Triangle read by rows: T(n,k) is the number of partitions of n having k parts with odd multiplicities.
1, 0, 1, 1, 1, 0, 2, 1, 2, 2, 1, 0, 4, 3, 3, 4, 3, 1, 0, 7, 7, 1, 5, 7, 7, 3, 0, 12, 14, 4, 7, 12, 14, 8, 1, 0, 19, 26, 10, 1, 11, 19, 26, 18, 3, 0, 30, 45, 22, 4, 15, 30, 45, 36, 9, 0, 45, 75, 44, 11, 1, 22, 45, 75, 67, 21, 1, 0, 67, 120, 81, 26, 3, 30, 67, 120, 119, 45, 4
Offset: 0
Examples
T(6,1) = 4 because we have [6*], [4*,1,1],[2*,2,2], and [2*,1,1,1,1] (parts with odd multiplicities are marked). Triangle starts: 1; 0, 1; 1, 1; 0, 2, 1; 2, 2, 1; 0, 4, 3; 3, 4, 3, 1; ...
Links
- Alois P. Heinz, Rows n = 0..1000, flattened
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 30
Programs
-
Maple
g := product((1+t*x^j)/(1-x^(2*j)), j = 1 .. 100): gser := simplify(series(g, x = 0, 30)): for n from 0 to 28 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 23 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(expand(`if`(j::odd, x, 1)*b(n-i*j, i-1)), j=0..n/i))) end: T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..20); # Alois P. Heinz, Nov 25 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Expand[If[OddQ[j], x, 1]* b[n-i*j, i-1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[ p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2016, after Alois P. Heinz *)
-
PARI
T(n) = { Vec(prod(k=1, n, (1 + y*x^k)/(1 - x^(2*k)) + O(x*x^n))) } { my(t=T(10)); for(n=1, #t, print(Vecrev(t[n]))); } \\ Andrew Howroyd, Dec 22 2017
Formula
G.f.: G(t,x) = Product_{j>=1} (1 + tx^j)/(1 - x^(2j)).
Sum_{k>0} k * T(n,k) = A209423(n). - Alois P. Heinz, Aug 05 2020
G.f.: A(x,y)*B(x^2) where A(x),B(x) are the o.g.f.'s for A008289 and A000041. (See Flajolet, Sedgewick link.) - Geoffrey Critzer, Aug 07 2022
Comments