cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264447 a(n) = n*(n + 7)*(n + 14)*(n + 21)/24.

Original entry on oeis.org

0, 110, 276, 510, 825, 1235, 1755, 2401, 3190, 4140, 5270, 6600, 8151, 9945, 12005, 14355, 17020, 20026, 23400, 27170, 31365, 36015, 41151, 46805, 53010, 59800, 67210, 75276, 84035, 93525, 103785, 114855, 126776, 139590, 153340, 168070, 183825, 200651, 218595, 237705, 258030
Offset: 0

Views

Author

Peter Bala, Nov 13 2015

Keywords

Comments

It is well-known, and easy to prove, that the product of 4 consecutive integers n*(n + 1)*(n + 2)*(n + 3) is divisible by 4!. It can be shown that the product of 4 integers in arithmetic progression n*(n + r)*(n + 2*r)*(n + 3*r) is divisible by 4! if and only if r is not divisible by 2 or 3 (see A007310 for these numbers). This is the case r = 7.

Crossrefs

Programs

  • Magma
    [n*(n+7)*(n+14)*(n+21)/24: n in [0..40]]; // Vincenzo Librandi, Nov 16 2015
  • Maple
    seq( n*(n + 7)*(n + 14)*(n + 21)/24, n = 0..40 );
  • Mathematica
    Table[n (n + 7) (n + 14) (n + 21)/24, {n, 0, 40}] (* Vincenzo Librandi, Nov 16 2015 *)
    Table[Times@@(n+7*Range[0,3])/24,{n,0,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,110,276,510,825},50] (* Harvey P. Dale, May 01 2017 *)
  • PARI
    vector(100, n, n--; n*(n+7)*(n+14)*(n+21)/24) \\ Altug Alkan, Nov 15 2015
    

Formula

O.g.f.: x*(110 - 274*x + 230*x^2 - 65*x^3)/(1 - x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>4. - Vincenzo Librandi, Nov 16 2015