A264450 a(n) = n*(n + 11)*(n + 22)*(n + 33)*(n + 44)/120.
0, 3519, 8372, 14805, 23088, 33516, 46410, 62118, 81016, 103509, 130032, 161051, 197064, 238602, 286230, 340548, 402192, 471835, 550188, 638001, 736064, 845208, 966306, 1100274, 1248072, 1410705, 1589224, 1784727, 1998360, 2231318, 2484846, 2760240, 3058848, 3382071
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n*(n+11)*(n+22)*(n+33)*(n+44)/120: n in [0..40]]; // Vincenzo Librandi, Nov 16 2015
-
Maple
seq( n*(n + 11)*(n + 22)*(n + 33)*(n + 44)/120, n = 0..33 );
-
Mathematica
Table[n (n + 11) (n + 22) (n + 33) (n + 44)/120, {n, 0, 40}] (* Vincenzo Librandi, Nov 16 2015 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,3519,8372,14805,23088,33516},40] (* Harvey P. Dale, Nov 27 2015 *)
-
PARI
vector(100, n, n--; n*(n+11)*(n+22)*(n+33)*(n+44)/120) \\ Altug Alkan, Nov 15 2015
Formula
O.g.f.: x*(2408*x^4 - 10542*x^3 + 17358*x^2 - 12742*x + 3519)/(1 - x)^6.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>5. - Vincenzo Librandi, Nov 16 2015
Comments