cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A268498 Expansion of Product_{k>=1} ((1 + 2*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 1, 0, 3, -1, 3, 3, 3, 0, 4, 12, 0, 9, -3, 21, 12, 17, -3, 33, 0, 33, 36, 36, 27, 21, 52, 24, 90, 72, 99, 24, 138, 21, 207, 0, 261, 149, 267, 45, 333, 174, 339, 174, 345, 411, 654, 330, 456, 657, 535, 684, 483, 1233, 489, 1353, 882, 1803, 720, 1902, 756
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Comments

It appears that this sequence contains only finitely many nonpositive terms, namely at indices {2, 4, 8, 11, 13, 17, 19, 34}. - Gus Wiseman, Jan 23 2019

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+2*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(2)^2 + 4*polylog(2, -1/2) = 2.4571173338382709125... .
a(n) = Sum_{k = 0...n} (-1)^k * A133121(n,k). - Gus Wiseman, Jan 23 2019
G.f.: Product_{k>=1} (1 - Sum_{j>=1} (-1)^j * x^(k*j)). - Ilya Gutkovskiy, Nov 06 2019

A321884 Number A(n,k) of partitions of n into colored blocks of equal parts with colors from a set of size k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 8, 5, 0, 1, 5, 8, 15, 14, 7, 0, 1, 6, 10, 24, 27, 24, 11, 0, 1, 7, 12, 35, 44, 51, 40, 15, 0, 1, 8, 14, 48, 65, 88, 93, 64, 22, 0, 1, 9, 16, 63, 90, 135, 176, 159, 100, 30, 0, 1, 10, 18, 80, 119, 192, 295, 312, 264, 154, 42, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Examples

			A(3,2) = 8: 3a, 3b, 2a1a, 2a1b, 2b1a, 2b1b, 111a, 111b.
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,    1,    1,    1, ...
  0,  1,   2,   3,   4,   5,    6,    7,    8, ...
  0,  2,   4,   6,   8,  10,   12,   14,   16, ...
  0,  3,   8,  15,  24,  35,   48,   63,   80, ...
  0,  5,  14,  27,  44,  65,   90,  119,  152, ...
  0,  7,  24,  51,  88, 135,  192,  259,  336, ...
  0, 11,  40,  93, 176, 295,  456,  665,  928, ...
  0, 15,  64, 159, 312, 535,  840, 1239, 1744, ...
  0, 22, 100, 264, 544, 970, 1572, 2380, 3424, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000041, A015128, A264686, A266821.
Main diagonal gives A321880.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
    A[n_, k_] := b[n, n, k];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{j>=1} (1+(k-1)*x^j)/(1-x^j).
A(n,k) = Sum_{i=0..floor((sqrt(1+8*k)-1)/2)} k!/(k-i)! * A321878(n,i).

A264685 Expansion of Product_{k>=1} (1 + x^k)/(1 - 2*x^k).

Original entry on oeis.org

1, 3, 9, 24, 60, 141, 324, 717, 1560, 3330, 7020, 14622, 30225, 61998, 126522, 257007, 520326, 1050396, 2116116, 4255584, 8547330, 17149350, 34382295, 68889840, 137969466, 276220962, 552865365, 1106356314, 2213644548, 4428657402, 8859340926, 17721640698
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)/(1 - 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^n, where c = A079555 / A048651 = Product_{k>=1} (2^k+1)/(2^k-1) = 8.25598793577825006554414084943227312652...

A266821 Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).

Original entry on oeis.org

1, 4, 8, 24, 44, 88, 176, 312, 544, 924, 1584, 2552, 4136, 6488, 10128, 15632, 23748, 35640, 53080, 78136, 114024, 165552, 237744, 339544, 481248, 678236, 949008, 1321840, 1830376, 2521688, 3456672, 4717208, 6406680, 8666448, 11672464, 15660528, 20934868
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A000041 and A032308.
In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 - x^k)) then a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(m+1)*n), where c = 2*Pi^2/3 + log(m)^2 + 2*polylog(2, -1/m).

Crossrefs

Column k=4 of A321884.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          (t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..44);  # Alois P. Heinz, Aug 28 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    { my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (8*Pi*n), where c = 2*Pi^2/3 + log(3)^2 + 2*polylog(2, -1/3) = 7.16861897522987077909937377164783326088308015803... .

A347830 a(n) = Sum_{k=0..n} 2^k * A000009(k) * A000041(n-k).

Original entry on oeis.org

1, 3, 8, 27, 67, 189, 509, 1329, 3344, 8694, 22062, 54756, 136741, 335103, 822277, 2016738, 4872787, 11711655, 28253743, 67319328, 160333627, 381350646, 901272326, 2121969771, 4991176893, 11689645776, 27305992220, 63705989106, 148106539514, 343371565449, 795524336390
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k*PartitionsQ[k]*PartitionsP[n-k], {k, 0, n}], {n, 0, 50}]
    nmax = 50; CoefficientList[Series[Product[(1 + 2^k*x^k) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ A065446 * 2^n * A000009(n).
a(n) ~ 2^(n-2) * exp(Pi*sqrt(n/3)) / (3^(1/4) * QPochhammer(1/2) * n^(3/4)).
G.f.: Product_{k>=1} (1 + 2^k*x^k) / (1 - x^k).
Showing 1-5 of 5 results.