A268498
Expansion of Product_{k>=1} ((1 + 2*x^k) / (1 + x^k)).
Original entry on oeis.org
1, 1, 0, 3, -1, 3, 3, 3, 0, 4, 12, 0, 9, -3, 21, 12, 17, -3, 33, 0, 33, 36, 36, 27, 21, 52, 24, 90, 72, 99, 24, 138, 21, 207, 0, 261, 149, 267, 45, 333, 174, 339, 174, 345, 411, 654, 330, 456, 657, 535, 684, 483, 1233, 489, 1353, 882, 1803, 720, 1902, 756
Offset: 0
-
nmax = 100; CoefficientList[Series[Product[(1+2*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A321884
Number A(n,k) of partitions of n into colored blocks of equal parts with colors from a set of size k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 8, 5, 0, 1, 5, 8, 15, 14, 7, 0, 1, 6, 10, 24, 27, 24, 11, 0, 1, 7, 12, 35, 44, 51, 40, 15, 0, 1, 8, 14, 48, 65, 88, 93, 64, 22, 0, 1, 9, 16, 63, 90, 135, 176, 159, 100, 30, 0, 1, 10, 18, 80, 119, 192, 295, 312, 264, 154, 42, 0
Offset: 0
A(3,2) = 8: 3a, 3b, 2a1a, 2a1b, 2b1a, 2b1b, 111a, 111b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 4, 6, 8, 10, 12, 14, 16, ...
0, 3, 8, 15, 24, 35, 48, 63, 80, ...
0, 5, 14, 27, 44, 65, 90, 119, 152, ...
0, 7, 24, 51, 88, 135, 192, 259, 336, ...
0, 11, 40, 93, 176, 295, 456, 665, 928, ...
0, 15, 64, 159, 312, 535, 840, 1239, 1744, ...
0, 22, 100, 264, 544, 970, 1572, 2380, 3424, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
A264685
Expansion of Product_{k>=1} (1 + x^k)/(1 - 2*x^k).
Original entry on oeis.org
1, 3, 9, 24, 60, 141, 324, 717, 1560, 3330, 7020, 14622, 30225, 61998, 126522, 257007, 520326, 1050396, 2116116, 4255584, 8547330, 17149350, 34382295, 68889840, 137969466, 276220962, 552865365, 1106356314, 2213644548, 4428657402, 8859340926, 17721640698
Offset: 0
-
nmax = 40; CoefficientList[Series[Product[(1 + x^k)/(1 - 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A266821
Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).
Original entry on oeis.org
1, 4, 8, 24, 44, 88, 176, 312, 544, 924, 1584, 2552, 4136, 6488, 10128, 15632, 23748, 35640, 53080, 78136, 114024, 165552, 237744, 339544, 481248, 678236, 949008, 1321840, 1830376, 2521688, 3456672, 4717208, 6406680, 8666448, 11672464, 15660528, 20934868
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..44); # Alois P. Heinz, Aug 28 2019
-
nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
{ my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017
Original entry on oeis.org
1, 3, 8, 27, 67, 189, 509, 1329, 3344, 8694, 22062, 54756, 136741, 335103, 822277, 2016738, 4872787, 11711655, 28253743, 67319328, 160333627, 381350646, 901272326, 2121969771, 4991176893, 11689645776, 27305992220, 63705989106, 148106539514, 343371565449, 795524336390
Offset: 0
-
Table[Sum[2^k*PartitionsQ[k]*PartitionsP[n-k], {k, 0, n}], {n, 0, 50}]
nmax = 50; CoefficientList[Series[Product[(1 + 2^k*x^k) / (1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-5 of 5 results.
Comments