cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264756 An eventually quasilinear solution to Hofstadter's Q recurrence.

Original entry on oeis.org

1, 0, 3, 3, 2, 6, 3, 2, 9, 3, 2, 12, 3, 2, 15, 3, 2, 18, 3, 2, 21, 3, 2, 24, 3, 2, 27, 3, 2, 30, 3, 2, 33, 3, 2, 36, 3, 2, 39, 3, 2, 42, 3, 2, 45, 3, 2, 48, 3, 2, 51, 3, 2, 54, 3, 2, 57, 3, 2, 60, 3, 2, 63, 3, 2, 66, 3, 2, 69, 3, 2, 72, 3, 2, 75, 3, 2, 78, 3, 2, 81
Offset: 1

Views

Author

Nathan Fox, Nov 23 2015

Keywords

Comments

a(n) is the solution to the recurrence relation a(n) = a(n-a(n-1)) +a(n-a(n-2)) [Hofstadter's Q recurrence], with the initial conditions: a(n) = 0 if n <= 0; a(1) = 1, a(2) = 0, a(3) = 3, a(4) = 3, a(5) = 2.

Crossrefs

Programs

  • Magma
    [1,0] cat [2+(n-3)*(1+Floor(-n/3)+Floor(n/3))-Floor(-(n+1)/3)-Floor((n+1)/3): n in [3..100]]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    CoefficientList[Series[-(2*x^7 + 2*x^6 - 2*x^4 - x^3 - 3*x^2 - 1)/((x - 1)^2*(x^2 + x + 1)^2), {x, 0, 100}], x] (* Wesley Ivan Hurt, Nov 24 2015 *)
    Join[{1, 0}, LinearRecurrence[{0, 0, 2, 0, 0, -1}, {3, 3, 2, 6, 3, 2}, 100]] (* Vincenzo Librandi, Nov 25 2015 *)
  • PARI
    Vec(-x*(2*x^7+2*x^6-2*x^4-x^3-3*x^2-1)/((x-1)^2*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Nov 23 2015
    

Formula

a(1) = 1, a(2) = 0; thereafter a(3n) = 3n, a(3n+1) = 3, a(3n+2) = 2.
From Colin Barker, Nov 23 2015: (Start)
a(n) = 2*a(n-3) - a(n-6) for n>8.
G.f.: -x*(2*x^7+2*x^6-2*x^4-x^3-3*x^2-1) / ((x-1)^2*(x^2+x+1)^2).
(End)
a(1) = 1, a(2) = 0, a(n) = 2 + (n-3)*(1 + floor(-n/3) + floor(n/3)) - floor(-(n+1)/3) - floor((n+1)/3) for n>2. - Wesley Ivan Hurt, Nov 24 2015