A264774 Triangle T(n,k) = binomial(5*n - 4*k, 4*n - 3*k), 0 <= k <= n.
1, 5, 1, 45, 6, 1, 455, 55, 7, 1, 4845, 560, 66, 8, 1, 53130, 5985, 680, 78, 9, 1, 593775, 65780, 7315, 816, 91, 10, 1, 6724520, 736281, 80730, 8855, 969, 105, 11, 1, 76904685, 8347680, 906192, 98280, 10626, 1140, 120, 12, 1, 886163135, 95548245, 10295472, 1107568, 118755, 12650, 1330, 136, 13, 1
Offset: 0
Examples
Triangle begins n\k | 0 1 2 3 4 5 6 7 ------+--------------------------------------------- 0 | 1 1 | 5 1 2 | 45 6 1 3 | 455 55 7 1 4 | 4845 560 66 8 1 5 | 53130 5985 680 78 9 1 6 | 593775 65780 7315 816 91 10 1 7 | 6724520 736281 80730 8855 969 105 11 1 ...
Links
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Section 2, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
Crossrefs
Programs
-
Magma
/* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
Maple
A264774:= proc(n,k) binomial(5*n - 4*k, 4*n - 3*k); end proc: seq(seq(A264774(n,k), k = 0..n), n = 0..10);
-
Mathematica
Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
Formula
T(n,k) = binomial(5*n - 4*k, n - k).
O.g.f.: f(x)/(1 - t*x*g(x)), where f(x) = Sum_{n >= 0} binomial(5*n,n)*x^n and g(x) = Sum_{n >= 0} 1/(4*n + 1)*binomial(5*n,n)*x^n.
Comments