cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264782 a(n) = Sum_{d|n} möbius(d)^(n/d).

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 4, 0, 2, 0, 8, 0, 2, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 8, 0, 2, 0
Offset: 1

Views

Author

Gevorg Hmayakyan, Nov 24 2015

Keywords

Examples

			a(1) = 1, a(p) = mu(1)^p + mu(p)^1 = 0.
a(p1*p2) = mu(1)^p1*p2 + mu(p1)^p2 + mu(p2)^p1 + mu(p1*p2) = 1+(-1)+(-1)+1 = 0.
a(2*p) = mu(1)^2*p + mu(2)^p + mu(p)^2 + mu(2*p) = 1+(-1)+1+1 = 2.
		

Crossrefs

Programs

  • Haskell
    a264782 n = sum $ zipWith (^) (map a008683 divs) (reverse divs)
                where divs = a027750_row n
    -- Reinhard Zumkeller, Dec 19 2015
    
  • Mathematica
    Table[Sum[MoebiusMu[d]^(n/d), {d, Divisors@ n}], {n, 87}] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)^d);
    
  • Perl
    use ntheory ":all"; sub a264782 { my $n=shift; divisor_sum($n, sub { moebius($[0]) ** ($n/$[0]) }); } # Dana Jacobsen, Dec 29 2015

Formula

a(n) = Sum_{d|n} möbius(d)^(n/d).
For odd n, a(n)=0.
For n = 2 * p1^k1 * p2^k2 * ... * pr^kr, a(n) = 2^r.
For n = 2^m * p1^k1 * p2^k2 * ... * pr^kr, a(n) = 2^(r+1) if m > 1.
a(2n) = A034444(n) for n > 1.
From Gevorg Hmayakyan, Dec 31 2016: (Start)
If b(n) = Sum_{d|n} möbius(d)^d, then b(n) = (A209229(n)+1)*((-1)^n + 1)/2*a(2*n)/2, for n > 1.
Dirichlet g.f.: 1 - 2^(-s) + 2^(-s)*zeta(s)^2/zeta(2*s) [corrected by Michael Shamos, Jul 18 2025]. (End)
Sum_{k=1..n} a(k) ~ 3*n / Pi^2 * (log(n) - 1 + 2*gamma - log(2) - 12*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019
G.f.: Sum_{k>=1} mu(k)*x^k/(1 - mu(k)*x^k). - Ilya Gutkovskiy, May 23 2019