cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264822 Centered 15-gonal (or pentadecagonal) primes.

Original entry on oeis.org

151, 421, 541, 991, 1171, 1801, 2851, 6091, 11701, 12301, 14851, 16921, 19891, 30241, 34171, 42751, 43891, 52291, 53551, 58741, 62791, 64171, 80341, 81901, 93241, 107101, 121921, 131671, 156601, 163171, 165391, 183691, 193201, 210421, 231001, 233641, 241651, 244351
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Primes of the form (15*k^2 - 15*k + 2)/2.
All the terms in this sequence are congruent to 1 (mod 10). - K. D. Bajpai, Nov 29 2015
The associated k-values are 5, 8, 9, 12, 13, 16, 20, 29, 40, 41, 45, 48, 52, 64, 68, 76, 77, 84, 85, 89, ... - Danny Rorabaugh, Jan 18 2016

Crossrefs

Programs

  • Magma
    [k: n in [1..10000] | IsPrime(k) where k is (15*n^2-15*n+2) div 2]; // K. D. Bajpai, Nov 29 2015
  • Maple
    select(isprime, [seq((15*k^2 - 15*k + 2) / 2, k=0..1000)]); # K. D. Bajpai, Nov 29 2015
  • Mathematica
    Select[Table[(15n^2 - 15n + 2) / 2, {n, 500}], PrimeQ] (* K. D. Bajpai, Nov 29 2015 *)
  • PARI
    for(n=1, 1e3, if(isprime(k=(15*n^2-15*n+2)/2), print1(k,", "))) \\ Altug Alkan, Nov 26 2015