A264822 Centered 15-gonal (or pentadecagonal) primes.
151, 421, 541, 991, 1171, 1801, 2851, 6091, 11701, 12301, 14851, 16921, 19891, 30241, 34171, 42751, 43891, 52291, 53551, 58741, 62791, 64171, 80341, 81901, 93241, 107101, 121921, 131671, 156601, 163171, 165391, 183691, 193201, 210421, 231001, 233641, 241651, 244351
Offset: 1
Keywords
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Centered Polygonal Number and Prime Number
Programs
-
Magma
[k: n in [1..10000] | IsPrime(k) where k is (15*n^2-15*n+2) div 2]; // K. D. Bajpai, Nov 29 2015
-
Maple
select(isprime, [seq((15*k^2 - 15*k + 2) / 2, k=0..1000)]); # K. D. Bajpai, Nov 29 2015
-
Mathematica
Select[Table[(15n^2 - 15n + 2) / 2, {n, 500}], PrimeQ] (* K. D. Bajpai, Nov 29 2015 *)
-
PARI
for(n=1, 1e3, if(isprime(k=(15*n^2-15*n+2)/2), print1(k,", "))) \\ Altug Alkan, Nov 26 2015
Comments