A264867 Numbers n such that n!3 + 3^8 is prime, where n!3 = n!!! is a triple factorial number (A007661).
2, 5, 10, 26, 34, 35, 37, 59, 68, 76, 104, 106, 188, 193, 242, 278, 287, 290, 572, 772, 773, 1304, 2384, 2716, 3715, 4562, 6706, 11489, 11711, 21602, 24295, 24775, 27224, 29935, 37856
Offset: 1
Examples
10!3 + 3^4 = 10*7*4*1 + 6561 = 6841 is prime, so 10 is in the sequence.
Links
- Henri & Renaud Lifchitz, PRP Records. Search for n!3+3^8
- Joe McLean, Interesting Sources of Probable Primes
- OpenPFGW Project, Primality Tester
Programs
-
Mathematica
MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]]; Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 3] + 3^8] &] Select[Range[800],PrimeQ[6561+Times@@Range[#,1,-3]]&] (* Harvey P. Dale, Mar 08 2023 *)
-
PARI
is(n)=ispseudoprime(n!!! + 3^8) \\ Anders Hellström, Nov 27 2015
-
PARI
tf(n) = prod(i=0,(n-1)\3, n-3*i); for(n=1, 1e4, if(ispseudoprime(tf(n) + 3^8), print1(n , ", "))) \\ Altug Alkan, Dec 03 2015
Comments