cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A291680 Number T(n,k) of permutations p of [n] such that in 0p the largest up-jump equals k and no down-jump is larger than 2; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 9, 8, 4, 0, 1, 25, 36, 20, 10, 0, 1, 71, 156, 108, 58, 26, 0, 1, 205, 666, 586, 340, 170, 74, 0, 1, 607, 2860, 3098, 2014, 1078, 528, 218, 0, 1, 1833, 12336, 16230, 11888, 6772, 3550, 1672, 672, 0, 1, 5635, 53518, 85150, 69274, 42366, 23284, 11840, 5454, 2126
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2017

Keywords

Comments

An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.

Examples

			T(4,1) = 1: 1234.
T(4,2) = 9: 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2413, 2431.
T(4,3) = 8: 1423, 1432, 3124, 3142, 3214, 3241, 3412, 3421.
T(4,4) = 4: 4213, 4231, 4312, 4321.
T(5,5) = 10: 53124, 53142, 53214, 53241, 53412, 53421, 54213, 54231, 54312, 54321.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   3,    2;
  0, 1,   9,    8,    4;
  0, 1,  25,   36,   20,   10;
  0, 1,  71,  156,  108,   58,   26;
  0, 1, 205,  666,  586,  340,  170,  74;
  0, 1, 607, 2860, 3098, 2014, 1078, 528, 218;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, k), j=1..min(2, u))+
          add(b(u+j-1, o-j, k), j=1..min(k, o)))
        end:
    T:= (n, k)-> b(0, n, k)-`if`(k=0, 0, b(0, n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[u_, o_, k_] := b[u, o, k] = If[u+o == 0, 1, Sum[b[u-j, o+j-1, k], {j, 1, Min[2, u]}] + Sum[b[u+j-1, o-j, k], {j, 1, Min[k, o]}]];
    T[n_, k_] := b[0, n, k] - If[k == 0, 0, b[0, n, k-1]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def b(u, o, k): return 1 if u + o==0 else sum([b(u - j, o + j - 1, k) for j in range(1, min(2, u) + 1)]) + sum([b(u + j - 1, o - j, k) for j in range(1, min(k, o) + 1)])
    def T(n, k): return b(0, n, k) - (0 if k==0 else b(0, n, k - 1))
    for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 30 2017

Formula

T(n,n) = A206464(n-1) for n>0.
Sum_{k=0..n} T(n,k) = A264868(n+1).

A264869 Triangular array: For n >= 2 and 0 <= k <= n - 2, T(n, k) equals the number of rooted duplication trees on n gene segments whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 10, 16, 22, 22, 22, 26, 48, 70, 92, 92, 92, 74, 144, 236, 328, 420, 420, 420, 218, 454, 782, 1202, 1622, 2042, 2042, 2042, 672, 1454, 2656, 4278, 6320, 8362, 10404, 10404, 10404, 2126, 4782, 9060, 15380, 23742, 34146, 44550, 54954, 54954, 54954
Offset: 2

Views

Author

Peter Bala, Nov 27 2015

Keywords

Comments

See Figure 3(a) in Gascuel et al. (2003).

Examples

			Triangle begins
  n\k|   0    1    2    3    4    5    6    7
  ---+---------------------------------------
   2 |   1
   3 |   1    1
   4 |   2    2    2
   5 |   4    6    6    6
   6 |  10   16   22   22   22
   7 |  26   48   70   92   92   92
   8 |  74  144  236  328  420  420  420
   9 | 218  454  782 1202 1622 2042 2042 2042
  ...
		

References

  • O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005

Crossrefs

Cf. A206464 (column 0), A264868 (row sums and main diagonal), A086521.

Programs

  • Maple
    A264869 := proc (n, k) option remember;
    `if`(n <= 2, 1, add(A264869(n - 1, j), j = 0 .. min(k + 1, n - 3))) end proc:
    seq(seq(A264869(n, k), k = 0..n - 2), n = 2..11);

Formula

T(n,k) = Sum_{j = 0.. k+1} T(n-1,j) for n >= 3, 0 <= k <= n - 2, with T(2,0) = 1 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 3, 1 <= k <= n - 2.

A086521 Number of tandem duplication trees on n duplicated gene segments.

Original entry on oeis.org

1, 1, 3, 11, 46, 210, 1021, 5202, 27477, 149324, 830357, 4705386, 27087106, 158019030, 932390694, 5555902302, 33391080001, 202196156448, 1232550473918, 7558030268270, 46592437224093, 288599067239678, 1795348952256896
Offset: 2

Views

Author

Michael D Hendy (m.hendy(AT)massey.ac.nz), Sep 10 2003

Keywords

Comments

For n > 2, 2*a(n) is the number of rooted tandem duplication trees. See A264869.

Examples

			a(5) = 11, so there are 11 binary leaf labeled trees on 5 duplicate genes. As there are 15 binary leaf labeled trees, this means not all binary leaf labeled trees can represent a gene duplication tree.
		

References

  • O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005

Crossrefs

Programs

  • Maple
    with(combinat):
    b := proc (n) option remember;
    if n = 2 then 2 elif n = 3 then 2 else add((-1)^(k+1)*binomial(n+1-2*k, k)*b(n-k), k = 1..floor((n+1)/3)) end if; end proc:
    seq(b(n)/2, n = 2..24); # Peter Bala, Nov 27 2015

Formula

a(n) = b(n+1, n-1), where b(n, 0) = b(n-1, 0) + b(n-1, 1); b(n, k) = b(n-1, k+1) + b(n, k-1), for k = 1, ..., n-2; with initial values b(2, 0) = 1, b(3, 0) = 0, b(3, 1) = 1.
For n >= 2, a(n) = b(n)/2, where b(n) = Sum_{k = 1..floor((n + 1)/3)} (-1)^(k + 1)*binomial(n + 1 - 2*k,k)*b(n-k) with b(1) = b(2) = 1 (Yang and Zhang). - Peter Bala, Nov 27 2015

Extensions

More terms from David Wasserman, Mar 11 2005

A264870 Triangular array: For n >= 2 and 0 < k <= n - 2, T(n, k) equals the number of (unrooted) duplication trees on n gene segments that are canonical and whose leftmost visible duplication event is (k, r), for 1 <= r <= (n - k)/2.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 3, 3, 5, 8, 11, 11, 11, 13, 24, 35, 46, 46, 46, 37, 72, 118, 164, 210, 210, 210, 109, 227, 391, 601, 811, 1021, 1021, 1021, 336, 727, 1328, 2139, 3160, 4181, 5202, 5202, 5202, 1063, 2391, 4530, 7690, 11871, 17073, 22275, 27477, 27477, 27477
Offset: 0

Views

Author

Peter Bala, Nov 27 2015

Keywords

Comments

See Figure 3(b) in Gascuel et al. (2003).
From row 4 onwards, the entries are one-half the corresponding entries in A264879.
Row sums give the number of unrooted duplication trees on n gene segments, A086521.

Examples

			Triangle begins
n\k|   0    1    2    3    4     5     6     7
----------------------------------------------
.2.|   1
.3.|   0    1
.4.|   1    1    1
.5.|   2    3    3    3
.6.|   5    8   11   11   11
.7.|  13   24   35   46   46    46
.8.|  37   72  118  164  210   210   210
.9.| 109  227  391  601  811  1021  1021  1021
...
		

References

  • O. Gascuel (Ed.), Mathematics of Evolution and Phylogeny, Oxford University Press, 2005

Crossrefs

Cf. A086521 (row sums), A264868, A264869.

Programs

  • Maple
    A264870 := proc (n, k) option remember;
    `if`(n = 3 and k = 0, 0, `if`(n <= 4 and k <= n-2, 1, `if`(k > n - 2, 0, add(A264870(n-1, j), j = 0..min(k+1, n))))) end proc:
    seq(seq(A264870(n, k), k = 0..n-2), n = 2..11);

Formula

T(n,k) = Sum_{j = 0..k+1} T(n-1,j) for n >= 4, 0 <= k <= n - 2, with T(2,0) = T(3,1) = 1, T(3,0) = 0 and T(n,k) = 0 for k >= n - 1.
T(n,k) = T(n,k-1) + T(n-1,k+1) for n >= 4, 1 <= k <= n - 2.
Showing 1-4 of 4 results.