cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136516 a(n) = (2^n+1)^n.

Original entry on oeis.org

1, 3, 25, 729, 83521, 39135393, 75418890625, 594467302491009, 19031147999601100801, 2460686496619787545743873, 1280084544196357822418212890625, 2672769719437237714909813214827010049, 22366167213460480200139104627873703828439041
Offset: 0

Views

Author

Paul D. Hanna, Jan 02 2008

Keywords

Comments

More generally, Sum_{n>=0} m^n * q^(n^2) * exp(b*q^n*x) * x^n / n! = Sum_{n>=0} (m*q^n + b)^n * x^n / n! for all q, m, b.
Main diagonal of A264871. - Omar E. Pol, Nov 27 2015

Examples

			A(x) = 1 + 3x + 5^2*x^2/2! + 9^3*x^3/3! + 17^4*x^4/4! +... + (2^n+1)^n*x^n/n! +...
A(x) = exp(x) + 2*exp(2x) + 2^4*exp(4x)*x^2/2! + 2^9*exp(8x)*x^3/3! +...+ 2^(n^2)*exp(2^n*x)*x^n/n! +...
This is a special case of the more general statement:
Sum_{n>=0} m^n * F(q^n*x)^b * log( F(q^n*x) )^n / n! = Sum_{n>=0} x^n * [y^n] F(y)^(m*q^n + b) where F(x) = exp(x), q=2, m=1, b=1.
		

Crossrefs

Programs

  • Magma
    [(2^n+1)^n: n in [0..45]]; // Vincenzo Librandi, Apr 21 2011
  • Maple
    seq((2^n+1)^n, n=0..30); # Robert Israel, Nov 27 2015
  • Mathematica
    Table[(2^n+1)^n,{n,0,16}] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*)
  • PARI
    a(n)=polcoeff(sum(k=0,n,2^(k^2)*exp(2^k*x)*x^k/k!),n)
    
  • PARI
    {a(n)=polcoeff(sum(k=0, n, 2^(k^2)*x^k/(1-2^k*x +x*O(x^n))^(k+1)), n)} \\ Paul D. Hanna, Sep 15 2009
    

Formula

E.g.f.: A(x) = Sum_{n>=0} 2^(n^2) * exp(2^n*x) * x^n/n!.
O.g.f.: Sum_{n>=0} 2^(n^2)*x^n/(1 - 2^n*x)^(n+1) = Sum_{n>=0} (2^n+1)^n*x^n. [Paul D. Hanna, Sep 15 2009]
a(n) = 2^(n^2) + n 2^(n^2-n) + O(n^2 2^(n^2-2n)). - Robert Israel, Nov 27 2015

A264872 Array read by antidiagonals: T(n,m) = 2^n*(1+2^n)^m; n,m >= 0.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 18, 20, 8, 16, 54, 100, 72, 16, 32, 162, 500, 648, 272, 32, 64, 486, 2500, 5832, 4624, 1056, 64, 128, 1458, 12500, 52488, 78608, 34848, 4160, 128, 256, 4374, 62500, 472392, 1336336, 1149984, 270400, 16512, 256, 512, 13122, 312500
Offset: 0

Views

Author

R. J. Mathar, Nov 27 2015

Keywords

Comments

Start with an n X m rectangle and cut it vertically along any set of the m-1 separators. There are binomial(m-1,c) ways of doing this with 0 <= c < m cuts. Inside each of these 1+c regions cut vertically, for which there are 2^(n-1) choices. The total number of ways of dissecting the rectangle into rectangles in this way is Sum_{c=0..m-1} binomial(m-1,c) 2^((1+c)(n-1)) = 2^(n-1)*(1+2^(n-1))^(m-1) = T(n-1,m-1).
The symmetrized version of the array is S(n,m) = T(n,m) + T(m,n) - 2^(m+n) <= A116694(n,m), which counts tilings that start with guillotine cuts either horizontally or vertically, avoiding double counting of the tilings where the order of the cuts does not matter. - R. J. Mathar, Nov 29 2015

Examples

			   1,    2,     4,       8,       16,         32, ...
   2,    6,    18,      54,      162,        486, ...
   4,   20,   100,     500,     2500,      12500, ...
   8,   72,   648,    5832,    52488,     472392, ...
  16,  272,  4624,   78608,  1336336,   22717712, ...
  32, 1056, 34848, 1149984, 37949472, 1252332576, ...
.
The symmetrized version S(n,m) starts
   1,    2,     4,       8,       16,         32, ...
   2,    8,    30,     110,      402,       1478, ...
   4,   30,   184,    1116,     7060,      47220, ...
   8,  110,  1116,   11600,   130968,    1622120, ...
  16,  402,  7060,  130968,  2672416,   60666672, ...
  32, 1478, 47220, 1622120, 60666672, 2504664128, ...
		

Crossrefs

Cf. A000079 (row and column 0), A008776 (row 1), A005054 (row 2), A055275 (row 3), A063376 (column 1).

Programs

  • Maple
    A264872 := proc(n,m)
        2^n*(1+2^n)^m ;
    end proc:
    seq(seq(A264872(n,d-n),n=0..d),d=0..12) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    Table[2^(n - m) (1 + 2^(n - m))^m, {n, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)

Formula

T(n,m) = 2^n*A264871(n,m).
T(n,m) <= A116694(n+1,m+1).
Showing 1-2 of 2 results.