cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264885 Numbers in A007504 such that omega(a(n)) = Omega(a(n)) = 3.

Original entry on oeis.org

238, 874, 2914, 3266, 3638, 4438, 5117, 6601, 7982, 8582, 9854, 10191, 10538, 10887, 11966, 13101, 17283, 19113, 23069, 38238, 40313, 41741, 46191, 53342, 54998, 56690, 68341, 74139, 80189, 84341, 88585, 90763, 95165, 98534, 100838
Offset: 1

Views

Author

Keywords

Comments

The corresponding numbers of prime summands, k(n), are 13, 23, 39, 41, 43, 47, 50, 56, 61, 63, 67, 68, 69, 70, 73, 76, 86, 90, 98, 123, 126, 128, 134, 143, 145, 147, 160, 166, 172, 176, 180, 182, 186, 189, 191, 196, 197, 200, 215, 220, 222, 225, 229, 238, 241, 251, 252, 265, 266, 267, ....
Intersection of A007504 and A007304 (sphenic numbers). - Michel Marcus, Dec 15 2015

Examples

			For n = 1, k(n) = 13 and a(n) = A007504(13) = 238 = 2*7*17.
For n = 2, k(n) = 23 and a(n) = A007504(23) = 874 = 2*19*23.
For n = 3, k(n) = 39 and a(n) = A007504(39) = 2914 = 2*31*47.
For n = 4, k(n) = 41 and a(n) = A007504(41) = 3266 = 2*23*71.
For n = 5, k(n) = 43 and a(n) = A007504(43) = 3638 = 2*17*107.
For n = 6, k(n) = 47 and a(n) = A007504(47) = 4438 = 2*7*317.
Note that for each of the elements of the sequence, omega(a(n)) = Omega(a(n)) = 3, i.e., the number of prime factors of a(n) = the number of distinct prime factors of a(n) = 3.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to use primes up to N
    select(t -> numtheory:-bigomega(t)=3 and numtheory:-issqrfree(t),
    ListTools:-PartialSums(select(isprime,[2,seq(i,i=3..N,2)]))); # Robert Israel, Dec 15 2015
  • Mathematica
    t = Accumulate@ Prime@ Range@ 300; Select[Range[2*10^5], And[MemberQ[t, #], PrimeNu@ # == PrimeOmega@ # == 3] &] (* Michael De Vlieger, Nov 27 2015, after Zak Seidov at A007504 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += prime(n); if ((omega(s) == 3) && (bigomega(s)==3), print1(s, ", ")););} \\ Michel Marcus, Nov 28 2015