cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264894 a(n) = n*(7*n - 5)*(49*n^2 - 35*n - 10)/8.

Original entry on oeis.org

0, 1, 261, 1956, 7291, 19500, 42846, 82621, 145146, 237771, 368875, 547866, 785181, 1092286, 1481676, 1966875, 2562436, 3283941, 4148001, 5172256, 6375375, 7777056, 9398026, 11260041, 13385886, 15799375, 18525351, 21589686, 25019281, 28842066, 33087000
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 9-gonal (or nonagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(7*n-5)*(49*n^2-35*n-10)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (7 n - 5) (49 n^2 - 35 n - 10)/8, {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,261,1956,7291},40] (* Harvey P. Dale, Apr 29 2017 *)
  • PARI
    vector(100, n, n--; n*(7*n-5)*(49*n^2-35*n-10)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 256*x + 661*x^2 + 111*x^3)/(1 - x)^5.
a(n) = A001106(A001106(n)).
Sum_{n>0} 1/a(n) = (4*(sqrt(65)*gamma + sqrt(65)*polygamma(0, 2/7) - 5*polygamma(0, (1/14)*(9 - sqrt(65))) + 5*polygamma(0, (1/14)*(9 + sqrt(65)))))/(25*sqrt(65)) = 1.0045877861645573..., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.